1,474 research outputs found

    Understanding the Observed Evolution of the Galaxy Luminosity Function from z=6-10 in the Context of Hierarchical Structure Formation

    Full text link
    Recent observations of the Lyman-break galaxy (LBG) luminosity function (LF) from z~6-10 show a steep decline in abundance with increasing redshift. However, the LF is a convolution of the mass function of dark matter halos (HMF)--which also declines sharply over this redshift range--and the galaxy-formation physics that maps halo mass to galaxy luminosity. We consider the strong observed evolution in the LF from z~6-10 in this context and determine whether it can be explained solely by the behavior of the HMF. From z~6-8, we find a residual change in the physics of galaxy formation corresponding to a ~0.5 dex increase in the average luminosity of a halo of fixed mass. On the other hand, our analysis of recent LF measurements at z~10 shows that the paucity of detected galaxies is consistent with almost no change in the average luminosity at fixed halo mass from z~8. The LF slope also constrains the variation about this mean such that the luminosity of galaxies hosted by halos of the same mass are all within about an order-of-magnitude of each other. We show that these results are well-described by a simple model of galaxy formation in which cold-flow accretion is balanced by star formation and momentum-driven outflows. If galaxy formation proceeds in halos with masses down to 10^8 Msun, then such a model predicts that LBGs at z~10 should be able to maintain an ionized intergalactic medium as long as the ratio of the clumping factor to the ionizing escape fraction is C/f_esc < 10.Comment: 15 pages, 2 figures; results unchanged; accepted by JCA

    The 1:1 resonance in Extrasolar Systems: Migration from planetary to satellite orbits

    Full text link
    We present families of symmetric and asymmetric periodic orbits at the 1/1 resonance, for a planetary system consisting of a star and two small bodies, in comparison to the star, moving in the same plane under their mutual gravitational attraction. The stable 1/1 resonant periodic orbits belong to a family which has a planetary branch, with the two planets moving in nearly Keplerian orbits with non zero eccentricities and a satellite branch, where the gravitational interaction between the two planets dominates the attraction from the star and the two planets form a close binary which revolves around the star. The stability regions around periodic orbits along the family are studied. Next, we study the dynamical evolution in time of a planetary system with two planets which is initially trapped in a stable 1/1 resonant periodic motion, when a drag force is included in the system. We prove that if we start with a 1/1 resonant planetary system with large eccentricities, the system migrates, due to the drag force, {\it along the family of periodic orbits} and is finally trapped in a satellite orbit. This, in principle, provides a mechanism for the generation of a satellite system: we start with a planetary system and the final stage is a system where the two small bodies form a close binary whose center of mass revolves around the star.Comment: to appear in Cel.Mech.Dyn.Ast

    Milagrito: a TeV air-shower array

    Full text link
    Milagrito, a large, covered water-Cherenkov detector, was the world's first air-shower-particle detector sensitive to cosmic gamma rays below 1 TeV. It served as a prototype for the Milagro detector and operated from February 1997 to May 1998. This paper gives a description of Milagrito, a summary of the operating experience, and early results that demonstrate the capabilities of this technique.Comment: 38 pages including 24 figure

    Optimal low-thrust trajectories to asteroids through an algorithm based on differential dynamic programming

    Get PDF
    In this paper an optimisation algorithm based on Differential Dynamic Programming is applied to the design of rendezvous and fly-by trajectories to near Earth objects. Differential dynamic programming is a successive approximation technique that computes a feedback control law in correspondence of a fixed number of decision times. In this way the high dimensional problem characteristic of low-thrust optimisation is reduced into a series of small dimensional problems. The proposed method exploits the stage-wise approach to incorporate an adaptive refinement of the discretisation mesh within the optimisation process. A particular interpolation technique was used to preserve the feedback nature of the control law, thus improving robustness against some approximation errors introduced during the adaptation process. The algorithm implements global variations of the control law, which ensure a further increase in robustness. The results presented show how the proposed approach is capable of fully exploiting the multi-body dynamics of the problem; in fact, in one of the study cases, a fly-by of the Earth is scheduled, which was not included in the first guess solution

    Long-term perturbations due to a disturbing body in elliptic inclined orbit

    Full text link
    In the current study, a double-averaged analytical model including the action of the perturbing body's inclination is developed to study third-body perturbations. The disturbing function is expanded in the form of Legendre polynomials truncated up to the second-order term, and then is averaged over the periods of the spacecraft and the perturbing body. The efficiency of the double-averaged algorithm is verified with the full elliptic restricted three-body model. Comparisons with the previous study for a lunar satellite perturbed by Earth are presented to measure the effect of the perturbing body's inclination, and illustrate that the lunar obliquity with the value 6.68\degree is important for the mean motion of a lunar satellite. The application to the Mars-Sun system is shown to prove the validity of the double-averaged model. It can be seen that the algorithm is effective to predict the long-term behavior of a high-altitude Martian spacecraft perturbed by Sun. The double-averaged model presented in this paper is also applicable to other celestial systems.Comment: 28 pages, 6 figure

    Pre-M Phase-promoting Factor Associates with Annulate Lamellae in Xenopus Oocytes and Egg Extracts

    Get PDF
    We have used complementary biochemical and in vivo approaches to study the compartmentalization of M phase-promoting factor (MPF) in prophase Xenopus eggs and oocytes. We first examined the distribution of MPF (Cdc2/CyclinB2) and membranous organelles in high-speed extracts of Xenopus eggs made during mitotic prophase. These extracts were found to lack mitochondria, Golgi membranes, and most endoplasmic reticulum (ER) but to contain the bulk of the pre-MPF pool. This pre-MPF could be pelleted by further centrifugation along with components necessary to activate it. On activation, Cdc2/CyclinB2 moved into the soluble fraction. Electron microscopy and Western blot analysis showed that the pre-MPF pellet contained a specific ER subdomain comprising "annulate lamellae" (AL): stacked ER membranes highly enriched in nuclear pores. Colocalization of pre-MPF with AL was demonstrated by anti-CyclinB2 immunofluorescence in prophase oocytes, in which AL are positioned close to the vegetal surface. Green fluorescent protein-CyclinB2 expressed in oocytes also localized at AL. These data suggest that inactive MPF associates with nuclear envelope components just before activation. This association may explain why nuclei and centrosomes stimulate MPF activation and provide a mechanism for targeting of MPF to some of its key substrates

    Can a Species Keep Pace with a Shifting Climate?

    Get PDF
    Consider a patch of favorable habitat surrounded by unfavorable habitat and assume that due to a shifting climate, the patch moves with a fixed speed in a one-dimensional universe. Let the patch be inhabited by a population of individuals that reproduce, disperse, and die. Will the population persist? How does the answer depend on the length of the patch, the speed of movement of the patch, the net population growth rate under constant conditions, and the mobility of the individuals? We will answer these questions in the context of a simple dynamic profile model that incorporates climate shift, population dynamics, and migration. The model takes the form of a growth-diffusion equation. We first consider a special case and derive an explicit condition by glueing phase portraits. Then we establish a strict qualitative dichotomy for a large class of models by way of rigorous PDE methods, in particular the maximum principle. The results show that mobility can both reduce and enhance the ability to track climate change that a narrow range can severely reduce this ability and that population range and total population size can both increase and decrease under a moving climate. It is also shown that range shift may be easier to detect at the expanding front, simply because it is considerably steeper than the retreating back

    Urine selenium concentration is a useful biomarker for assessing population level selenium status

    Get PDF
    Plasma selenium (Se) concentration is an established population level biomarker of Se status, especially in Se-deficient populations. Previously observed correlations between dietary Se intake and urinary Se excretion suggest that urine Se concentration is also a potentially viable biomarker of Se status. However, there are only limited data on urine Se concentration among Se-deficient populations. Here, we test if urine is a viable biomarker for assessing Se status among a large sample of women and children in Malawi, most of whom are likely to be Se-deficient based on plasma Se status. Casual (spot) urine samples (n = 1406) were collected from a nationally representative sample of women of reproductive age (WRA, n =741) and school aged children (SAC, n=665) across Malawi as part of the 2015/16 Demographic and Health Survey. Selenium concentration in urine was determined using inductively coupled plasma mass spectrometry (ICP-MS). Urinary dilution corrections for specific gravity, osmolality, and creatinine were applied to adjust for hydration status. Plasma Se status had been measured for the same survey participants. There was between-cluster variation in urine Se concentration that corresponded with variation in plasma Se concentration, but not between households within a cluster, or between individuals within a household. Corrected urine Se concentrations explained more of the between-cluster variation in plasma Se concentration than uncorrected data. These results provide new evidence that urine may be used in the surveillance of Se status at the population level in some groups. This could be a cost-effective option if urine samples are already being collected for other assessments, such as for iodine status analysis as in the Malawi and other national Demographic and Health Surveys

    Strangeness Enhancement in p+Ap+A and S+AS+A Interactions at SPS Energies

    Full text link
    The systematics of strangeness enhancement is calculated using the HIJING and VENUS models and compared to recent data on pp\,pp\,, pA\,pA\, and AA\,AA\, collisions at CERN/SPS energies (200AGeV200A\,\, GeV\,). The HIJING model is used to perform a {\em linear} extrapolation from pppp to AAAA. VENUS is used to estimate the effects of final state cascading and possible non-conventional production mechanisms. This comparison shows that the large enhancement of strangeness observed in S+AuS+Au collisions, interpreted previously as possible evidence for quark-gluon plasma formation, has its origins in non-equilibrium dynamics of few nucleon systems. % Strangeness enhancement %is therefore traced back to the change in the production dynamics %from pppp to minimum bias pSpS and central SSSS collisions. A factor of two enhancement of Λ0\Lambda^{0} at mid-rapidity is indicated by recent pSpS data, where on the average {\em one} projectile nucleon interacts with only {\em two} target nucleons. There appears to be another factor of two enhancement in the light ion reaction SSSS relative to pSpS, when on the average only two projectile nucleons interact with two target ones.Comment: 29 pages, 8 figures in uuencoded postscript fil

    Peak Stir Zone Temperatures during Friction Stir Processing

    Get PDF
    The stir zone (SZ) temperature cycle was measured during the friction stir processing (FSP) of NiAl bronze plates. The FSP was conducted using a tool design with a smooth concave shoulder and a 12.7-mm step-spiral pin. Temperature sensing was accomplished using sheathed thermocouples embedded in the tool path within the plates, while simultaneous optical pyrometry measurements of surface temperatures were also obtained. Peak SZ temperatures were 990 ⁰Cto 1015 ⁰C (0.90 to 0.97 TMelt) and were not affected by preheating to 400⁰C, although the dwell time above 900 ⁰C was increased by the preheating. Thermocouple data suggested little variation in peak temperature across the SZ, although thermocouples initially located on the advancing sides and at the centerlines of the tool traverses were displaced to the retreating sides, precluding direct assessment of the temperature variation across the SZ. Microstructure-based estimates of local peak SZ temperatures have been made on these and on other similarly processed materials. Altogether, the peak-temperature determinations from these different measurement techniques are in close agreement
    corecore