50,136 research outputs found
Applications of inverse simulation to a nonlinear model of an underwater vehicle
Inverse simulation provides an important alternative
to conventional simulation and to more formal
mathematical techniques of model inversion. The
application of inverse simulation methods to a nonlinear
dynamic model of an unmanned underwater vehicle with
actuator limits is found to give rise to a number of
challenging problems. It is shown that this particular
problem requires, in common with other applications that
include hard nonlinearities in the model or discontinuities
in the required trajectory, can best be approached using a
search-based optimization algorithm for inverse
simulation in place of the more conventional Newton-
Raphson approach. Results show that meaningful inverse
simulation results can be obtained but that multi-solution
responses exist. Although the inverse solutions are not
unique they are shown to generate the required
trajectories when tested using conventional forward
simulation methods
Microbial diversity in the thermal springs within Hot Springs National Park
The thermal water systems of Hot Springs National Park (HSNP) in Hot Springs, Arkansas exist in relative isolation from other North American thermal systems. The HSNP waters could therefore serve as a unique center of thermophilic microbial biodiversity. However, these springs remain largely unexplored using culture-independent next generation sequencing techniques to classify species of thermophilic organisms. Additionally, HSNP has been the focus of anthropogenic development, capping and diverting the springs for use in recreational bathhouse facilities. Human modification of these springs may have impacted the structure of these bacterial communities compared to springs left in a relative natural state. The goal of this study was to compare the community structure in two capped springs and two uncapped springs in HSNP, as well as broadly survey the microbial diversity of the springs. We used Illumina 16S rRNA sequencing of water samples from each spring, the QIIME workflow for sequence analysis, and generated measures of genera and phyla richness, diversity, and evenness. In total, over 700 genera were detected and most individual samples had more than 100 genera. There were also several uncharacterized sequences that could not be placed in known taxa, indicating the sampled springs contain undescribed bacteria. There was great variation both between sites and within samples, so no significant differences were detected in community structure between sites. Our results suggest that these springs, regardless of their human modification, contain a considerable amount of biodiversity, some of it potentially unique to the study site
Thermal and structural modeling of superinsulation
Model permits direct physical measurement of the thermal response of critical components of space telescopes, thus providing flexibility for systems studies and design changes
Thermal and structural modeling of a large aperture space telescope Technical summary report, 22 Jun. - 22 Sep. 1968
Thermal and structural modeling for large aperture space telescop
- …