1,224 research outputs found

    Energy Finance in the New Industry Economics

    Get PDF

    Internal agent states : experiments using the swarm leader concept

    Get PDF
    In recent years, an understanding of the operating principles and stability of natural swarms has proven to be a useful tool for the design and control of artificial robotic agents. Many robotic systems, whose design or control principals are inspired by behavioural aspects of real biological systems such as leader-follower relationship, have been developed. We introduced an algorithm which successfully enhances the navigation performance of a swarm of robots using the swarm leader concept. This paper presents some applications based on that work using the simulations and experimental implementation using a swarming behaviour test-bed at the University of Strathclyde. Experimental and simulation results match closely in a way that confirms the efficiency of the algorithm as well as its applicability

    Towards a global sustainable development agenda built on social–ecological resilience

    Get PDF
    Non-technical summary. The United Nations’ sustainable development goals (SDGs) articulate societal aspirations for people and our planet. Many scientists have criticised the SDGs and some have suggested that a better understanding of the complex interactions between society and the environment should underpin the next global development agenda. We further this discussion through the theory of social–ecological resilience, which emphasises the ability of systems to absorb, adapt, and transform in the face of change. We determine the strengths of the current SDGs, which should form a basis for the next agenda, and identify key gaps that should be filled. Technical summary. The United Nations’ sustainable development goals (SDGs) are past their halfway point and the next global development agenda will soon need to be developed. While laudable, the SDGs have received strong criticism from many, and scholars have proposed that adopting complex adaptive or social–ecological system approaches would increase the effectiveness of the agenda. Here we dive deeper into these discussions to explore how the theory of social–ecological resilience could serve as a strong foundation for the next global sustainable development agenda. We identify the strengths and weaknesses of the current SDGs by determining which of the 169 targets address each of 43 factors affecting social–ecological resilience that we have compiled from the literature. The SDGs with the strongest connections to social–ecological resilience are the environment-focus goals (SDGs 2, 6, 13, 14, 15), which are also the goals consistently under-prioritised in the implementation of the current agenda. In terms of the 43 factors affecting social–ecological resilience, the SDG strengths lie in their communication, inclusive decision making, financial support, regulatory incentives, economic diversity, and transparency in governance and law. On the contrary, ecological factors of resilience are seriously lacking in the SDGs, particularly with regards to scale, crossscale interactions, and non-stationarity. Social media summary. The post-2030 agenda should build on strengths of SDGs 2, 6, 13, 14, 15, and fill gaps in scale, variability, and feedbacks

    Mechanical loss of a multilayer tantala/silica coating on a sapphire disk at cryogenic temperatures: toward the KAGRA gravitational wave detector

    Get PDF
    We report the results of a new experimental setup to measure the mechanical loss of coating layers on a thin sapphire disk at cryogenic temperatures. Some of the authors previously reported that there was no temperature dependence of the mechanical loss from a multilayer tantala/silica coating on a sapphire disk, both before and after heat treatment, although some reports indicate that Ta<sub>2</sub>O<sub>5</sub> and SiO<sub>2</sub> layers annealed at 600 °C have loss peaks near 20 K. Since KAGRA—the Japanese gravitational-wave detector, currently under construction—will be operated at 20 K and have coated sapphire mirrors, it is very important to clarify the mechanical loss behavior of tantala/silica coatings around this temperature. We carefully investigate a tantala/silica-coated sapphire disk with the new setup, anneal the disk, and then investigate the annealed disk. We find that there is no distinct loss peak both before and after annealing under particular conditions. The mechanical loss for the unannealed disk at 20 K is about 5×10<sup>−4</sup>, as previously reported, while that for the annealed disk is approximately 6.4×10<sup>−4</sup>

    Cryogenic mechanical loss of a single-crystalline GaP coating layer for precision measurement applications

    Get PDF
    The first direct observations of gravitational waves have been made by the Advanced LIGO detectors. However, the quest to improve the sensitivities of these detectors remains, and epitaxially grown single-crystal coatings show considerable promise as alternatives to the ion-beam sputtered amorphous mirror coatings typically used in these detectors and other such precision optical measurements. The mechanical loss of a 1 Όm thick single-crystalline gallium phosphide (GaP) coating, incorporating a buffer layer region necessary for the growth of high quality epitaxial coatings, has been investigated over a broad range of frequencies and with fine temperature resolution. It is shown that at 20 K the mechanical loss of GaP is a factor of 40 less than an undoped tantala film heat-treated to 600 °C and is comparable to the loss of a multilayer GaP/AlGaP coating. This is shown to translate into possible reductions in coating thermal noise of a factor of 2 at 120 K and 5 at 20 K over the current best IBS coatings (alternating stacks of silica and titania-doped tantala). There is also evidence of a thermally activated dissipation process between 50 and 70 K

    Ion-beam sputtered amorphous silicon films for cryogenic precision measurement systems

    Get PDF
    Thermal noise resulting from the mechanical loss of multilayer dielectric coatings is expected to impose a limit to the sensitivities of precision measurement systems used in fundamental and applied science. In the case of gravitational wave astronomy, future interferometric gravitational wave detectors are likely to operate at cryogenic temperatures to reduce such thermal noise and ameliorate thermal loading effects, with the desirable thermomechanical properties of silicon making it an attractive mirror substrate choice for this purpose. For use in such a precision instrument, appropriate coatings of low thermal noise are essential. Amorphous silicon (a−Si) deposited by e-beam and other techniques has been shown to have low mechanical loss. However, to date, the levels of mechanical and optical loss for a−Si when deposited by ion-beam sputtering (the technique required to produce amorphous mirrors of the specification for gravitational wave detector mirrors) are unknown. In this paper results from measurements of the mechanical loss of a series of IBS a−Si films are presented which show that reductions are possible in coating thermal noise of a factor of 1.5 at 120 K and 2.1 at 20 K over the current best IBS coatings (alternating stacks of silica and titania-doped tantala), with further reductions feasible under appropriate heat treatments

    NuSTAR Spectroscopy of Multi-Component X-ray Reflection from NGC 1068

    Get PDF
    We report on observations of NGC1068 with NuSTAR, which provide the best constraints to date on its >10>10~keV spectral shape. We find no strong variability over the past two decades, consistent with its Compton-thick AGN classification. The combined NuSTAR, Chandra, XMM-Newton, and Swift-BAT spectral dataset offers new insights into the complex reflected emission. The critical combination of the high signal-to-noise NuSTAR data and a spatial decomposition with Chandra allow us to break several model degeneracies and greatly aid physical interpretation. When modeled as a monolithic (i.e., a single N_H) reflector, none of the common Compton-reflection models are able to match the neutral fluorescence lines and broad spectral shape of the Compton reflection. A multi-component reflector with three distinct column densities (e.g., N_H~1.5e23, 5e24, and 1e25 cm^{-2}) provides a more reasonable fit to the spectral lines and Compton hump, with near-solar Fe abundances. In this model, the higher N_H components provide the bulk of the Compton hump flux while the lower N_H component produces much of the line emission, effectively decoupling two key features of Compton reflection. We note that ~30% of the neutral Fe Kalpha line flux arises from >2" (~140 pc), implying that a significant fraction of the <10 keV reflected component arises from regions well outside of a parsec-scale torus. These results likely have ramifications for the interpretation of poorer signal-to-noise observations and/or more distant objects [Abridged].Comment: Submitted to ApJ; 23 pages (ApJ format); 11 figures and 3 tables; Comments welcomed

    Low-temperature mechanical dissipation of thermally evaporated indium film for use in interferometric gravitational wave detectors

    Get PDF
    Indium bonding is under consideration for use in the construction of cryogenic mirror suspensions in future gravitational wave detectors. This paper presents measurements of the mechanical loss of a thermally evaporated indium film over a broad range of frequencies and temperatures. It provides an estimate of the resulting thermal noise at 20 K for a typical test mass geometry for a cryogenic interferometric gravitational wave detector from an indium layer between suspension elements
    • 

    corecore