66,096 research outputs found
Development of high resolution imaging detectors for x ray astronomy
This final report summarizes our past activities and discusses the work performed over the period of 1 April 1990 through 1 April 1991 on x-ray optics, soft x-ray (0.1 - 10 KeV) imaging detectors, and hard x-ray (10 - 300 KeV) imaging detectors. If microchannel plates (MCPs) can be used to focus x-rays with a high efficiency and good angular resolution, they will revolutionize the field of x-ray optics. An x-ray image of a point source through an array of square MCP pores compared favorably with our ray tracing model for the MCP. Initial analysis of this image demonstrates the feasibility of MCPs for soft x-rays. Our work continues with optimizing the performance of our soft x-ray MCP imaging detectors. This work involves readout technology that should provide improved MCP readout devices (thin film crossed grid, curved, and resistive sheets), defect removal in MCPs, and photocathode optimization. In the area of hard x-ray detector development we have developed two different techniques for producing a CsI photocathode thickness of 10 to 100 microns, such that it is thick enough to absorb the high energy x-rays and still allow the photoelectrons to escape to the top MCP of a modified soft x-ray imaging detector. The methods involve vacuum depositing a thick film of CsI on a strong back, and producing a converter device that takes the place of the photocathode
Periodically Controlled Hybrid Systems: Verifying A Controller for An Autonomous Vehicle
This paper introduces Periodically Controlled Hybrid Automata (PCHA) for describing a class of hybrid control systems. In a PCHA, control actions occur roughly periodically while internal and input actions, may occur in the interim changing the discrete-state or the setpoint. Based on periodicity and subtangential conditions, a new sufficient condition for verifying invariance of PCHAs is presented. This technique is used in verifying safety of the planner-controller subsystem of an autonomous ground vehicle, and in deriving geometric properties of planner generated paths that can be followed safely by the controller under environmental uncertainties
A moving cold front in the intergalactic medium of A3667
We present results from a Chandra observation of the central region of the
galaxy cluster A3667, with emphasis on the prominent sharp X-ray brightness
edge spanning 0.5 Mpc near the cluster core. Our temperature map shows
large-scale nonuniformities characteristic of the ongoing merger, in agreement
with earlier ASCA results. The brightness edge turns out to be a boundary of a
large cool gas cloud moving through the hot ambient gas, very similar to the
"cold fronts" discovered by Chandra in A2142. The higher quality of the A3667
data allows the direct determination of the cloud velocity. At the leading edge
of the cloud, the gas density abruptly increases by a factor of 3.9+-0.8, while
the temperature decreases by a factor of 1.9+-0.2 (from 7.7 keV to 4.1 keV).
The ratio of the gas pressures inside and outside the front shows that the
cloud moves through the ambient gas at near-sonic velocity, M=1+-0.2 or
v=1400+-300 km/s. In front of the cloud, we observe the compression of the
ambient gas with an amplitude expected for such a velocity. A smaller surface
brightness discontinuity is observed further ahead, ~350 kpc in front of the
cloud. We suggest that it corresponds to a weak bow shock, implying that the
cloud velocity may be slightly supersonic. Given all the evidence, the cold
front appears to delineate the remnant of a cool subcluster that recently has
merged with A3667. The cold front is remarkably sharp. The upper limit on its
width, 3.5 arcsec or 5 kpc, is several times smaller than the Coulomb mean free
path. This is a direct observation of suppression of the transport processes in
the intergalactic medium, most likely by magnetic fields.Comment: Submitted to ApJ. 9 pages with embedded color figures, uses
emulateapj5. Postscript with higher quality figures is available at
http://hea-www.harvard.edu/~alexey/a3667-hydro.ps.g
The Impact of Early Positive Results on a Mathematics and Science Partnership: The Experience of the Institute for Chemistry Literacy Through Computational Science
After one year of implementation, the Institute for Chemistry Literacy through Computational Science, an NSF Mathematics and Science Partnership Institute Project led by the University of Illinois at Urbana-Champaignâs Department of Chemistry, College of Medicine, and National Center for Supercomputing Applications, experienced statistically signiïŹcant gains in chemistry content knowledge among students of the rural high school teachers participating in its intensive, year-round professional development course, compared to a control group. The project utilizes a two-cohort, delayed-treatment, random control trial, quasi-experimental research design with the second cohort entering treatment one year following the ïŹrst. The three-year treatment includes intensive two-week summer institutes, occasional school year workshops and year-round, on-line collaborative lesson development, resource sharing, and expert support. The means of student pre-test scores for Cohort I (η=963) and Cohort II (η=862) teachers were not signiïŹcantly different. The mean gain (difference between pre-test and post-test scores) after seven months in the classroom for Cohort I was 9.8 percentage points, compared to 6.7 percentage points for Cohort II. This statistically signiïŹcant difference (p\u3c.001) represented an effect size of .25 standard deviation units, and indicated unusually early conïŹrmation of treatment effects. When post-tests were compared, Cohort I students scored signiïŹcantly higher than Cohort II and supported the gain score differences. The impact of these results on treatment and research plans is discussed. concentrating on the effect of lessening rural teachersâ isolation and increasing access to tools to facilitate learning
The NASA Astrophysics Data System: Architecture
The powerful discovery capabilities available in the ADS bibliographic
services are possible thanks to the design of a flexible search and retrieval
system based on a relational database model. Bibliographic records are stored
as a corpus of structured documents containing fielded data and metadata, while
discipline-specific knowledge is segregated in a set of files independent of
the bibliographic data itself.
The creation and management of links to both internal and external resources
associated with each bibliography in the database is made possible by
representing them as a set of document properties and their attributes.
To improve global access to the ADS data holdings, a number of mirror sites
have been created by cloning the database contents and software on a variety of
hardware and software platforms.
The procedures used to create and manage the database and its mirrors have
been written as a set of scripts that can be run in either an interactive or
unsupervised fashion.
The ADS can be accessed at http://adswww.harvard.eduComment: 25 pages, 8 figures, 3 table
The NASA Astrophysics Data System: The Search Engine and its User Interface
The ADS Abstract and Article Services provide access to the astronomical
literature through the World Wide Web (WWW). The forms based user interface
provides access to sophisticated searching capabilities that allow our users to
find references in the fields of Astronomy, Physics/Geophysics, and
astronomical Instrumentation and Engineering. The returned information includes
links to other on-line information sources, creating an extensive astronomical
digital library. Other interfaces to the ADS databases provide direct access to
the ADS data to allow developers of other data systems to integrate our data
into their system.
The search engine is a custom-built software system that is specifically
tailored to search astronomical references. It includes an extensive synonym
list that contains discipline specific knowledge about search term
equivalences.
Search request logs show the usage pattern of the various search system
capabilities. Access logs show the world-wide distribution of ADS users.
The ADS can be accessed at http://adswww.harvard.eduComment: 23 pages, 18 figures, 11 table
The NASA Astrophysics Data System: Data Holdings
Since its inception in 1993, the ADS Abstract Service has become an
indispensable research tool for astronomers and astrophysicists worldwide. In
those seven years, much effort has been directed toward improving both the
quantity and the quality of references in the database. From the original
database of approximately 160,000 astronomy abstracts, our dataset has grown
almost tenfold to approximately 1.5 million references covering astronomy,
astrophysics, planetary sciences, physics, optics, and engineering. We collect
and standardize data from approximately 200 journals and present the resulting
information in a uniform, coherent manner. With the cooperation of journal
publishers worldwide, we have been able to place scans of full journal articles
on-line back to the first volumes of many astronomical journals, and we are
able to link to current version of articles, abstracts, and datasets for
essentially all of the current astronomy literature. The trend toward
electronic publishing in the field, the use of electronic submission of
abstracts for journal articles and conference proceedings, and the increasingly
prominent use of the World Wide Web to disseminate information have enabled the
ADS to build a database unparalleled in other disciplines.
The ADS can be accessed at http://adswww.harvard.eduComment: 24 pages, 1 figure, 6 tables, 3 appendice
ESO 3060170 -- a massive fossil galaxy group with a heated gas core?
We present a detailed study of the ESO 3060170 galaxy group combining
Chandra, XMM and optical observations. The system is found to be a fossil
galaxy group. The group X-ray emission is composed of a central dense cool core
(10 kpc in radius) and an isothermal medium beyond the central 10 kpc. The
region between 10 and 50 kpc (the cooling radius) has the same temperature as
the gas from 50 kpc to 400 kpc although the gas cooling time between 10 and 50
kpc (2 - 6 Gyr) is shorter than the Hubble time. Thus, the ESO 3060170 group
does not have a group-sized cooling core. We suggest that the group cooling
core may have been heated by a central AGN outburst in the past and the small
dense cool core is the truncated relic of a previous cooling core. The Chandra
observations also reveal a variety of X-ray features in the central region,
including a ``finger'', an edge-like feature and a small ``tail'', all aligned
along a north-south axis, as are the galaxy light and group galaxy
distribution. The proposed AGN outburst may cause gas ``sloshing'' around the
center and produce these asymmetric features. The observed flat temperature
profile to 1/3 R_vir is not consistent with the predicted temperature profile
in recent numerical simulations. We compare the entropy profile of the ESO
3060170 group with those of three other groups and find a flatter relation than
that predicted by simulations involving only shock heating, S r. This is direct evidence for the importance of non-gravitational
processes in group centers. We derive the mass profiles within 1/3 R_vir and
find the ESO 3060170 group is the most massive fossil group known (1 - 2 X
10 M). The M/L ratio of the system, ~ 150 at 0.3 R_vir, is
normal.Comment: 17 pages, 12 figures, to appear in ApJ. A high-resolution version can
be downloaded from http://cxc.harvard.edu/~msun/esoa.p
- âŠ