2,132 research outputs found
Delayed Dynamical Systems: Networks, Chimeras and Reservoir Computing
We present a systematic approach to reveal the correspondence between time
delay dynamics and networks of coupled oscillators. After early demonstrations
of the usefulness of spatio-temporal representations of time-delay system
dynamics, extensive research on optoelectronic feedback loops has revealed
their immense potential for realizing complex system dynamics such as chimeras
in rings of coupled oscillators and applications to reservoir computing.
Delayed dynamical systems have been enriched in recent years through the
application of digital signal processing techniques. Very recently, we have
showed that one can significantly extend the capabilities and implement
networks with arbitrary topologies through the use of field programmable gate
arrays (FPGAs). This architecture allows the design of appropriate filters and
multiple time delays which greatly extend the possibilities for exploring
synchronization patterns in arbitrary topological networks. This has enabled us
to explore complex dynamics on networks with nodes that can be perfectly
identical, introduce parameter heterogeneities and multiple time delays, as
well as change network topologies to control the formation and evolution of
patterns of synchrony
Experimental observation of chimera and cluster states in a minimal globally coupled network
A "chimera state" is a dynamical pattern that occurs in a network of coupled
identical oscillators when the symmetry of the oscillator population is broken
into synchronous and asynchronous parts. We report the experimental observation
of chimera and cluster states in a network of four globally coupled chaotic
opto-electronic oscillators. This is the minimal network that can support
chimera states, and our study provides new insight into the fundamental
mechanisms underlying their formation. We use a unified approach to determine
the stability of all the observed partially synchronous patterns, highlighting
the close relationship between chimera and cluster states as belonging to the
broader phenomenon of partial synchronization. Our approach is general in terms
of network size and connectivity. We also find that chimera states often appear
in regions of multistability between global, cluster, and desynchronized
states
Recommendations and illustrations for the evaluation of photonic random number generators
The never-ending quest to improve the security of digital information
combined with recent improvements in hardware technology has caused the field
of random number generation to undergo a fundamental shift from relying solely
on pseudo-random algorithms to employing optical entropy sources. Despite these
significant advances on the hardware side, commonly used statistical measures
and evaluation practices remain ill-suited to understand or quantify the
optical entropy that underlies physical random number generation. We review the
state of the art in the evaluation of optical random number generation and
recommend a new paradigm: quantifying entropy generation and understanding the
physical limits of the optical sources of randomness. In order to do this, we
advocate for the separation of the physical entropy source from deterministic
post-processing in the evaluation of random number generators and for the
explicit consideration of the impact of the measurement and digitization
process on the rate of entropy production. We present the Cohen-Procaccia
estimate of the entropy rate as one way to do this. In order
to provide an illustration of our recommendations, we apply the Cohen-Procaccia
estimate as well as the entropy estimates from the new NIST draft standards for
physical random number generators to evaluate and compare three common optical
entropy sources: single photon time-of-arrival detection, chaotic lasers, and
amplified spontaneous emission
Steady-state dynamics of Cajal body components in the Xenopus germinal vesicle
Cajal bodies (CBs) are evolutionarily conserved nuclear organelles that contain many factors involved in the transcription and processing of RNA. It has been suggested that macromolecular complexes preassemble or undergo maturation within CBs before they function elsewhere in the nucleus. Most such models of CB function predict a continuous flow of molecules between CBs and the nucleoplasm, but there are few data that directly support this view. We used fluorescence recovery after photobleaching (FRAP) on isolated Xenopus oocyte nuclei to measure the steady-state exchange rate between the nucleoplasm and CBs of three fluorescently tagged molecules: U7 small nuclear RNA, coilin, and TATA-binding protein (TBP). In the nucleoplasm, the apparent diffusion coefficients for the three molecules ranged from 0.26 to 0.40 μm2 s−1. However, in CBs, fluorescence recovery was markedly slower than in the nucleoplasm, and there were at least three kinetic components. The recovery rate within CBs was independent of bleach spot diameter and could not be attributed to high CB viscosity or density. We propose that binding to other molecules and possibly assembly into larger complexes are the rate-limiting steps for FRAP of U7, coilin, and TBP inside CBs
Examining relational social ontologies of disaster resilience: lived experiences from India, Indonesia, Nepal, Chile and Andean territories
Purpose: The neoliberal resilience discourse and its critiques both contribute to its hegemony, obscuring alternative discourses in the context of risk and uncertainties. Drawing from the “ontology of potentiality”, the authors suggest reclaiming “resilience” through situated accounts of the connected and relational every day from the global south. To explore alternate possibilities, the authors draw attention to the social ontology of disaster resilience that foregrounds relationality, intersectionality and situated knowledge. /
Design/methodology/approach: Quilting together the field work experiences in India, Indonesia, Nepal, Chile and Andean territories, the authors interrogate the social ontologies and politics of resilience in disaster studies in these contexts through six vignettes. Quilting, as a research methodology, weaves together various individual fragments involving their specific materialities, situated knowledge, layered temporalities, affects and memories. The authors’ six vignettes discuss the use, politicisation and resistance to resilience in the aftermath of disasters. /
Findings: While the pieces do not try to bring out a single “truth”, the authors argue that firstly, the vignettes provide non-Western conceptualisations of resilience, and attempts to provincialise externally imposed notions of resilience. Secondly, they draw attention to social ontology of resilience as the examples underscores the intersubjectivity of disaster experiences, the relational reaching out to communities and significant others. /
Originality/value: Drawing from in-depth research conducted in six disaster contexts by seven scholars from South Asia, South America and Northern Europe, the authors embrace pluralist situated knowledge, and cross-cultural/language co-authoring. Thus, the co-authored piece contributes to diversifying disaster studies scholarship methodologically
Ambiguity and Freedom of Dissent in Post-Incident Discussion
The after-action review (AAR) is a discussion technique some high-reliability organizations employ to encourage learning via collective retrospection. AARs are an effective communication tool for promoting reliability if they are held regularly. One way to encourage frequent AARs is to increase participants’ satisfaction with these meetings. This study examined the impact of post-incident, pre-discussion ambiguity and freedom of dissent on participant satisfaction with AARs. Firefighters (N = 119) completed a survey on their most recent AAR. As predicted, the level of post-incident, pre-discussion ambiguity was negatively related to AAR satisfaction. Freedom of dissent, however, attenuated the negative influence of ambiguity on AAR satisfaction
Myeloid DAP12-associating lectin (MDL)-1 regulates synovial inflammation and bone erosion associated with autoimmune arthritis.
DNAX adaptor protein 12 (DAP12) is a trans-membrane adaptor molecule that transduces activating signals in NK and myeloid cells. Absence of functional Dap12 results in osteoclast defects and bone abnormalities. Because DAP12 has no extracelluar binding domains, it must pair with cell surface receptors for signal transduction. There are at least 15 known DAP12-associating cell surface receptors with distinct temporal and cell type-specific expression patterns. Our aim was to determine which receptors may be important in DAP12-associated bone pathologies. Here, we identify myeloid DAP12-associating lectin (MDL)-1 receptor (also known as CLEC5A) as a key regulator of synovial injury and bone erosion during autoimmune joint inflammation. Activation of MDL-1 leads to enhanced recruitment of inflammatory macrophages and neutrophils to the joint and promotes bone erosion. Functional blockade of MDL-1 receptor via Mdl1 deletion or treatment with MDL-1-Ig fusion protein reduces the clinical signs of autoimmune joint inflammation. These findings suggest that MDL-1 receptor may be a therapeutic target for treatment of immune-mediated skeletal disorders
Impact of changing US cigarette smoking patterns on incident cancer: Risks of 20 smoking-related cancers among the women and men of the NIH-AARP cohort
Background: Historically, US women started smoking at a later age than men and had lower relative risks for smoking-related cancers. However, more recent birth cohorts of women and men have similar smoking histories and have now reached the high-risk age for cancer. The impact of these changes on cancer incidence has not been systematically examined. Methods: Relative risks (RR), 95% confidence intervals (CI) and attributable fractions were calculated for cigarette smoking and incidence of 20 smoking-related cancers in 186 057 women and 266 074 men of the National Institutes of Health-AARP cohort, aged 50 to 71 years in 1995 and followed for 11 years. Results: In the cohort, which included participants born between 1924 and 1945, most women and men started smoking as teenagers. RRs for current vs never smoking were similar in women and men for the following cancers: lung squamous-cell (RR women: 121.4, 95% CI: 57.3–257.4; RR men:114.6, 95% CI: 61.2–214.4), lung adenocarcinoma (RR women: 11.7, 95% CI: 9.8–14.0; RR men: 15.6, 95% CI: 12.5–19.6), laryngeal (RR women: 37.0, 95% CI: 14.9–92.3; RR men: 13.8, 95% CI: 9.3–20.2), oral cavity-pharyngeal (RR women:4.4, 95% CI: 3.3–6.0; RR men: 3.8, 95% CI: 3.0–4.7), oesophageal squamous cell (RR women: 7.3, 95% CI: 3.5–15.5; RR men: 6.2, 95% CI: 2.8–13.7), bladder (RR women: 4.7, 95% CI: 3.7–5.8; RR men: 4.0, 95% CI: 3.5–4.5), colon (RR women: 1.3, 95% CI: 1.2–1.5; RR men: 1.3, 95% CI: 1.1–1.4), and at other sites, with similar attributable fractions. Conclusions: RRs for current smoking and incidence of many smoking-related cancers are now similar in US women and men, likely reflecting converging smoking patterns
- …