2,673 research outputs found

    Current Practices in the Use of Psychological Testing by Police Agencies

    Get PDF

    Excitotoxic Lesions of the Nucleus Paragigantocellularis Facilitate Male Sexual Behavior but Attenuate Female Sexual Behavior in Rats

    Get PDF
    Little is known regarding the descending inhibitory control of genital reflexes such as ejaculation and vaginal contractions. The brainstem nucleus paragigantocellularis (nPGi) projects bilaterally to the lumbosacral motoneuron pools that innervate the genital musculature of both male and female rats. Electrolytic nPGi lesions facilitate ejaculation in males, leading to the hypothesis that the nPGi is the source of descending inhibition to genital reflexes. However, the function of the nPGi in female sexual behavior remains to be elucidated. To this end, male and female rats received bilateral excitotoxic fiber-sparing lesions of the nPGi, and sexual behavior and sexual behavior-induced Fos expression were examined. In males, nPGi lesions facilitated copulation, supporting the hypothesis that the nPGi, and not fibers-of-passage, is the source of descending inhibition of genital reflexes in male rats. nPGi lesions in males did not alter sexual behavior-induced Fos expression in any brain region examined. nPGi-lesioned females spent significantly less time mating with stimulus males and had significantly longer ejaculation-return latencies compared to baseline. These results did not significantly differ from control females, but this trend warranted further analysis of the reinforcing value of sexual behavior. Both lesioned and non-lesioned females formed a conditioned place preference (CPP) for artificial vaginocervical stimulation (aVCS). However, post-reinforcement, nPGilesioned females did not differ in the percentage of time in spent in the non-reinforced chamber versus the reinforced chamber, suggesting a weakened CPP for aVCS. nPGi lesions in females reduced sexual behavior-induced Fos expression throughout the hypothalamus and amygdala. Taken together, these results suggest that while nPGi lesions in males facilitate copulation, such lesions in females attenuate several aspects of sexual behavior resulting in a reduction in the rewarding value of copulation that may be mediated by nPGi control of genital reflexes. This work has important implications for the understanding and treatment of sexual dysfunction in people including delayed/premature ejaculation, involuntary vaginal spasms, and pain during intercourse

    Somatic Genital Reflexes in Rats with a Nod to Humans: Anatomy, Physiology, and the Role of the Social Neuropeptides

    Get PDF
    Somatic genital reflexes such as ejaculation and vaginocervical contractions are produced through the striated muscles associated with the genitalia. The coordination of these reflexes is surprisingly complex and involves a number of lumbosacral spinal and supraspinal systems. The rat model has proved to be an excellent source of information regarding these mechanisms, and many parallels to research in humans can be drawn. An understanding of the spinal systems involving the lumbosacral spinal cord, both efferent and afferent, has been generated through decades of research. Spinal and supraspinal mechanisms of descending excitation, through a spinal ejaculation generator in the lumbar spinal cord and thalamus, and descending inhibition, through the ventrolateral medulla, have been identified and characterized both anatomically and physiologically. In addition, delineation of the neural circuits whereby ascending genitosensory information regarding the regulation of somatic genital reflexes is relayed supraspinally has also been the topic of recent investigation. Lastly, the importance of the “social neuropeptides” oxytocin and vasopressin in the regulation of somatic genital reflexes, and associated sociosexual behaviors, is emerging. This work not only has implications for understanding how nervous systems generate sexual behavior, but also provides treatment targets for sexual dysfunction in people

    Serotonergic Lesions of the Periaqueductal Gray, a Primary Source of Serotonin to the Nucleus Paragigantocellularis, Facilitate Sexual Behavior in Male Rats

    Get PDF
    While selective serotonin reuptake inhibitors (SSRIs) are widely used to treat anxiety and depression, they also produce profound disruptions of sexual function including delayed orgasm/ejaculation. The nucleus paragigantocellularis (nPGi), a primary source of inhibition of ejaculation in male rats, contains receptors for serotonin (5-HT). The ventrolateral periaqueductal gray (vlPAG) provides serotonin to this region, thus providing an anatomical and neurochemical basis for serotonergic regulation of the nPGi. We hypothesize that 5-HT acting at the nPGi could underlie the SSRI-induced inhibition of ejaculation in rodents. To this end, we produced 5-HT lesions of the source of 5-HT to the nPGi (the vlPAG) and examined sexual behavior. Removing the source of 5-HT to the nPGi facilitated genital reflexes, but not other aspects of sexual behavior, consistent with our hypothesis. Namely, 5-HT lesions produced a significant increase in the mean number of ejaculations and a significant decrease in ejaculation latency as compared to sham lesioned animals, while latency to mating and the post-ejaculatory interval did not differ. These data suggest that the serotonergic vlPAG-nPGi pathway is an important regulatory mechanism for the inhibition of ejaculation in rats, and supports the hypothesis that this circuit contributes to SSRI-induced inhibition of ejaculation

    Nucleus Paragigantocellularis Afferents in Male and Female Rats: Organization, Gonadal Steroid Receptor Expression, and Activation During Sexual Behavior

    Get PDF
    The supraspinal regulation of genital reflexes is poorly understood. The brainstem nucleus paragigantocellularis (nPGi) of rats is a well-established source of tonic inhibition of genital reflexes. However, the organization, gonadal steroid receptor expression, and activity of nPGi afferents during sex have not been fully characterized in male and female rats. To delineate the anatomical and physiological organization of nPGi afferents, the retrograde tracer Fluoro-Gold (FG) was injected into the nPGi of sexually experienced male and female rats. Animals engaged in sexual behavior 1 hour before sacrifice. Cells containing FG, estrogen receptor-α (ERα), androgen receptor (AR), and the immediate-early gene product Fos were identified immunocytochemically. Retrograde labeling from the nPGi was prominent in the bed nucleus of the stria terminalis, paraventricular nucleus (PVN), posterior hypothalamus, precommissural nucleus, deep mesencephalic nucleus, and periaqueductal gray (PAG) of both sexes. Sex differences were observed in the caudal medial preoptic area (MPO), with significantly more FG+ cells observed in males, and in the PAG and inferior colliculus, where significantly more FG+ cells were observed in females. The majority of regions that contained FG+ cells also contained ERα or AR, indicating sensitivity to gonadal steroids. The proportions of FG+ cells that co-localized with sex-induced Fos was high in the PVN of both sexes and high in the MPO of males but low in the PAG of both sexes despite the large number of PAG-nPGi output neurons and Fos+ cells in both sexes. The characterization of these afferents will lead to a further understanding of the neural regulation of genital reflexes

    MASE: A New Data--Reduction Pipeline for the Magellan Echellette Spectrograph

    Get PDF
    We introduce a data reduction package written in Interactive Data Language (IDL) for the Magellan Echellete Spectrograph (MAGE). MAGE is a medium-resolution (R ~4100), cross-dispersed, optical spectrograph, with coverage from ~3000-10000 Angstroms. The MAGE Spectral Extractor (MASE) incorporates the entire image reduction and calibration process, including bias subtraction, flat fielding, wavelength calibration, sky subtraction, object extraction and flux calibration of point sources. We include examples of the user interface and reduced spectra. We show that the wavelength calibration is sufficient to achieve ~5 km/s RMS accuracy and relative flux calibrations better than 10%. A light-weight version of the full reduction pipeline has been included for real-time source extraction and signal-to-noise estimation at the telescope.Comment: 10 pages (ApJ format), accepted PAS

    Financing opportunities through property specific commercial mortgage securities

    Get PDF
    Thesis (M.S.)--Massachusetts Institute of Technology, Dept. of Architecture, 1987.Includes bibliographical references.by Stephen J. Murphy.M.S

    Germline knockout of Nr2e3 protects photoreceptors in three distinct mouse models of retinal degeneration

    Get PDF
    Retinitis pigmentosa (RP) is a common form of retinal dystrophy that can be caused by mutations in any one of dozens of rod photoreceptor genes. The genetic heterogeneity of RP represents a significant challenge for the development of effective therapies. Here, we present evidence for a potential gene-independent therapeutic strategy based on targetin
    corecore