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Abstract 

 Somatic genital reflexes such as ejaculation and vaginocervical contractions 

are produced through the striated muscles associated with the genitalia.  The 

coordination of these reflexes is surprisingly complex and involves a number of 

lumbosacral spinal and supraspinal systems.  The rat model has proved to be an 

excellent source of information regarding these mechanisms, and many parallels to 

research in humans can be drawn.  An understanding of the spinal systems involving 

the lumbosacral spinal cord, both efferent and afferent, has been generated through 

decades of research.  Spinal and supraspinal mechanisms of descending excitation, 

through a spinal ejaculation generator in the lumbar spinal cord and thalamus, and 

descending inhibition, through the ventrolateral medulla, have been identified and 

characterized both anatomically and physiologically.  In addition, delineation of the 

neural circuits whereby ascending genitosensory information regarding the regulation 

of somatic genital reflexes is relayed supraspinally has also been the topic of recent 

investigation.  Lastly, the importance of the “social neuropeptides” oxytocin and 

vasopressin in the regulation of somatic genital reflexes, and associated sociosexual 

behaviors, is emerging.  This work not only has implications for understanding how 

nervous systems generate sexual behavior, but also provides treatment targets for 

sexual dysfunction in people. 
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Introduction 

While advances in our knowledge of the supraspinal and spinal control of the 

genital musculature have been made, the neural circuits and neurochemistry 

underlying the regulation of somatic genital reflexes such as ejaculation in men, and 

vaginocervical contractions in women, have not been fully elucidated.  In both men 

and women, internally or externally derived stimulation results in rhythmic 

contractions of genital muscles often associated with orgasm (Argiolas and Melis, 

2003).  All of these processes are reflexive and under the control of somatic spinal 

efferents (Giuliano and Clement, 2005; McKenna, 2002; Temel et al., 2005).  

However, these efferents are regulated by both excitatory and inhibitory control from 

numerous spinal and supraspinal sites.  Coordination of the various circuits 

controlling genital reflexes has been studied extensively in men, with recent interest 

in defining homologous circuits in women. From this work, a general understanding of 

the discrete processes underlying genital reflex control has been established.  First, 

the autonomic nervous system plays the key role in providing the necessary signals 

for increased blood flow to the genitalia for both men (erection) and women (genital 

engorgement) as well as providing signals for the production of secretive fluids used 

for lubrication and seminal transfer (ejaculation: emission phase; McKenna, 2002; 

Temel et al., 2005; Yang and Jiang, 2009).  Second, and the focus of this review, the 

somatic nervous system provides the signals for rhythmic contractions of the genital 

musculature in both men (ejaculation: expulsion phase) and women (vaginocervical 

contractions; Giuliano and Clement, 2005; Levin, 1998; Yang and Jiang, 2009).  

There is a surprisingly complex integration of ascending sensory information from the 

genitalia with both descending excitatory and inhibitory inputs to the spinal motor 

neurons.  Non-human animal models, in particular the rat, have been particularly 



informative in elucidating the basic anatomy and physiology of these circuits (Pfaus 

et al., 2003).  An understanding of the anatomy and physiology of these circuits, with 

a special emphasis on social neuropeptides, is an important area of research with 

significant implications for our understanding of basic sexual processes as well as 

sexual dysfunction in people.  

 

The striated genital musculature and associated motoneurons 

The pelvic muscles associated with the genitalia in both humans and rats 

include the striated perineal muscles m. bulbospongiosus (also known as the m. 

bulbocavernosus), m. ischiocavernosus, and m. levator ani (Blaivas et al., 1981; 

deGroat and Booth, 1980; Holmes et al., 1991; Rand and Breedlove, 1987). These 

muscles, in particular the bulbospongiosus, provide the rhythmic contractions 

associated with orgasm and the expulsion of semen during ejaculation in males in 

both humans and rats (Ertekin and Reel, 1976; Gerstenberg et al., 1990; Hart and 

Melese-D'Hospital, 1983; Holmes et al., 1991; Sachs, 1982).  In females, despite the 

“vestigial” description some authors have applied (Arakawa et al., 2010; Fishman and 

Breedlove, 1988), these muscles are found to produce rhythmic contractions during 

orgasm in both humans and rats (Giraldi et al., 2004; McKenna and Nadelhaft, 1989; 

Meston et al., 2004; Vodusek et al., 1983).    

The perineal muscles are innervated by the pelvic and pudendal nerves 

(Pacheco et al., 1989; Pastelin et al., 2008) from the lower lumbar and upper sacral 

divisions of the spinal cord (de Araujo et al., 1982; Katagiri et al., 1986; Roppolo et 

al., 1985) in both humans and rats.  In rats, the lumbosacral spinal motoneuron pools 

associated with these nerves are referred to as the dorsomedial nucleus (DM; also 

referred to as the spinal nucleus of the bulbocavernosus) and the dorsolateral 



nucleus (DL) of the L5-S1 ventral horn (Collins et al., 1991; Katagiri et al., 1986; 

McKenna and Nadelhaft, 1986; Peshori et al., 1995; Schroder, 1980).   The DM and 

DL are considered homologues of Onuf’s nucleus in humans (Breedlove and Arnold, 

1980; Roppolo et al., 1985; Schroder, 1981).  The DM is an androgen sensitive 

sexually dimorphic structure with more numerous and larger cells in males in both 

humans (Forger and Breedlove, 1986) and rats (Breedlove and Arnold, 1980; 

Freeman et al., 1995; Katagiri et al., 1986). 

The DM and DL nuclei are active during ejaculation in rats (Clement et al., 

2007; Giuliano et al., 2007).  Interneurons within the spinal cord appear to connect 

primary afferent somatosensory information with the DM and DL (Collins et al., 1991; 

Peshori et al., 1995; Wiedey et al., 2008), but a number of descending projections 

from other parts of the spinal cord, as well as from supraspinal sites, provide both 

excitatory and inhibitory drive to these motoneuron pools (Allard et al., 2005; Coolen, 

2005; Marson and McKenna, 1990; Wagner and Clemens, 1991).  These excitatory 

and inhibitory drives compete at the level of the spinal cord motoneuronal pools to 

regulate somatic genital reflexes. 

 

The ejaculation generator and descending excitatory circuits 

A hypothesized ejaculation generator, constituting a central pattern generator 

for the muscles of ejaculation, has been described in the lumbar spinal cord of rats, 

and appears to be present in both sexes (Carro-Juarez and Rodriguez-Manzo, 2006).  

These galanin-immunoreactive neurons, referred to as lumbar spinothalamic (LSt) 

neurons, express ejaculation induced Fos (Truitt et al., 2003) and project to both a 

thalamic region (the parvocellular subparafascicular thalamic nucleus; SPFpc) that 

expresses ejaculation-induced Fos (Coolen et al., 2003a; Coolen et al., 2003b), and 



the autonomic nuclei responsible for the emission phase of ejaculation (Xu et al., 

2006), and the DM and DL (Newton, 1993; Xu et al., 2006).  This anatomical 

connectivity suggests a central role in the relay of sensory information from the 

genitals, in combination with the coordination of the emission and expulsion phase of 

ejaculation.  In fact, lesions of these lumbar spinothalamic cells abolish the ability of 

male rats to ejaculate, while leaving other aspects of sexual behavior intact (Truitt 

and Coolen, 2002).  In addition, electrical stimulation of LSt cells in male rats 

produces both the emission and expulsion phase of ejaculation in a coordinated 

fashion, as measured by elicited seminal vesicle and bulbospongiosus contractions 

(Borgdorff et al., 2008).  Interestingly, vaginocervical stimulation does not induce Fos 

expression in these cells in female rats indicating that there may be a discrete sexual 

dimorphism in the organization of this circuit (Truitt, Shipley et al. 2003).  It is also 

possible that descending excitation to the somatic motoneurons is relayed from these 

LSt cells, through the thalamus, to other forebrain regions with descending input to 

the DM and DL spinal motoneuronal pools. 

The paraventricular hypothalamic nucleus (PVN) has direct and indirect 

connections to the DM and DL (Tang et al., 1999; Wagner and Clemens, 1991).  The 

PVN has been previously implicated in the control of genital reflexes, and is most 

likely a source of descending excitatory input to the genital musculature.  Lesions of 

both magnocellular and parvocellular PVN cells increase ejaculation latency in rats 

(Liu et al., 1997), though lesions restricted to the parvocellular PVN do not 

(Ackerman et al., 1997).  Importantly, lesions of the PVN have more dramatic effects 

on penile reflexes mediated by the autonomic nervous system rather than somatic 

efferents (Ackerman et al., 1997; Chen et al., 1997; Eaton et al., 1991; Liu et al., 



1997), and it has been difficult to tease apart these two components of sexual 

behavior with regard to descending PVN projections. 

 

Descending inhibition via the nucleus paragigantocellularis 

The nPGi of the ventrolateral medulla is the hypothesized source of 

descending inhibition to genital reflexes   In humans, the homologous structure is 

referred to as the nucleus paragigantocellularis lateralis (Zec and Kinney, 2001) and 

is also believed to be associated with descending inhibition of genital reflexes 

(Johnson, 2006).  Numerous lines of evidence suggest that the nPGi is the primary 

source of descending inhibition of genital reflexes in rats and humans.   

The nPGi sends direct descending androgen sensitive projections to the DM 

and DL in both male and female rats (Hamson et al., 2004; Hermann et al., 2003; 

Marson and Carson 3rd, 1999; Marson and McKenna, 1996; Tang et al., 1999).  

Electrolytic (Yells et al., 1992; Yells et al., 1994) or neurotoxic (Normandin and 

Murphy, 2011) lesions of the nPGi in male rats consistently result in the facilitation of 

sexual behavior, as indicated by a decrease in mount and intromission frequency, 

ejaculation latency, and an increase the number of ejaculations to satiety.  nPGi 

lesions also decrease the latency to- and increase the number of ex copula erections 

(Marson et al., 1992; Marson and McKenna, 1990).  Similarly, electrical stimulation of 

nPGi neurons in male rats produces increased firing latency and decreased 

amplitude of firing in the DM (Johnson and Hubscher, 1998), consistent with the role 

of the nPGi as a source of tonic descending inhibition of genital reflexes.   

The role of the nPGi in female sexual behavior has not received as much 

attention.  However, anatomical evidence suggests that the nPGi is important for 

sexual behavior in females.  Retrograde trans-synaptic tracing from rat clitoris 



(Marson and Murphy, 2006), vagina (Marson and Murphy, 2006), and cervix (Lee and 

Erskine, 2000) produces extensive labeling in the nPGi of females.  In addition, a 

number of brain regions associated with sexual behavior project to the nPGi of 

female rats, including the medial preoptic area of the hypothalamus (MPOA), PVN, 

and periaqueductal gray (PAG; Marson and Foley, 2004; Marson and Murphy, 2006; 

Murphy and Hoffman, 2001; Normandin and Murphy, 2008), suggesting a role for the 

nPGi in female sexual behavior.  Our laboratory has recently reported that excitotoxic 

lesions of the nPGi in female rats left most sexual behaviors intact, though curiously, 

lesioned females spent less time mating, and had longer ejaculation-return latencies 

as compared to baseline, suggesting that the reinforcing value of sexual behavior 

had been altered (Normandin and Murphy, 2011).  To test this hypothesis, 

subsequent experiments were performed using conditioned place-preference for 

artificial vaginocervical stimulation (aVCS).  While both nPGi lesioned and non-

lesioned females formed a conditioned place preference for aCVS, the amount of 

time lesioned females spent in the non-reinforced chamber versus the reinforced 

chamber did not differ, indicating a weakened CPP for aVCS. These data suggest 

that nPGi lesions produce dysregulation of genital function that feeds back on reward 

systems (Normandin and Murphy, 2011).  Further testing of the effect of nPGi lesions 

on the physiology of the pelvic muscles in females is needed to confirm this 

hypothesis. 

How the central nervous system regulates descending inhibition of genital 

reflexes via the nPGi has received little attention.  However, some clues regarding 

the neuroanatomy of these circuits, and how sex hormones may potentially influence 

them, have been found.  Using the retrograde tracer Fluorogold we found that a 

multitude of regions throughout the neuraxis project to the nPGi (Normandin and 



Murphy, 2008), which is not surprising for a brainstem reticular region.  To resolve 

which nPGi-projecting regions are most important for the regulation of genital 

reflexes, we combined our tracing with sexual behavior-induced Fos expression and 

found that only a few hypothalamic regions, such as the MPOA, PVN, and 

perifornical nucleus projected to the nPGi and were active during sexual behavior 

(Normandin and Murphy, 2008).  This is particularly interesting as the MPOA is 

known to be critical for the expression of sexual behavior (Balthazart and Ball, 2007; 

Hull et al., 1995; Sakuma, 2008).  In addition, we found that MPOA-nPGi projecting 

cell numbers were sexually dimorphic, with a much larger number of MPOA-nPGi 

projecting cells in males.  The location of estrogen and androgen receptors in relation 

to MPOA-nPGi projections was also examined.  We found that males have a greater 

percentage of MPOA-nPGi projecting cells that contain androgen receptors than 

females (Normandin and Murphy, 2008), indicating that androgenic stimulation of the 

MPOA is critical in male sexual behavior.  How the MPOA, or any of the other regions 

mentioned, influence nPGi activity remains to be elucidated, but given the pro-sexual 

role of the MPOA, a working hypothesis might be that MPOA projections to the nPGi 

would inhibit nPGi activity, allowing for the disinhibition of genital reflexes.  

 

Ascending genitosensation 

Despite decades of research on sexual behavior circuits in mammalian 

models, a complete description of neural targets receiving genitosensory information 

is unavailable.  The rat model has been studied most extensively with regard to 

genitosensory circuits.  The somatosensory afferents from the genitalia travel along 

the sensory branches of the pelvic, pudendal, and hypogastric nerves (Dail et al., 

1985; Nunez et al., 1986; Peters et al., 1987; Purinton et al., 1976) terminating within 



the dorsal horn of the lumbosacral spinal cord (Martin-Alguacil et al., 2008; Nunez et 

al., 1986), with collaterals traveling to supraspinal sites.  Specific nervous system 

regions receiving genitosensory information have been described in rats.  Important 

sites within the spinal cord (LSt) and thalamus (SPFpc) that receive genitosensory 

information, and that are important for the regulation of sexual response, have been 

described (Coolen et al., 2003a; Truitt and Coolen, 2002).  Medullary reticular cells 

also receive genitosensory input in male rats as evidenced by electrophysiological 

recordings in conjunction with stimulation of the penis (Hubscher and Johnson, 1996) 

through multiple ascending pathways (Hubscher et al., 2010).  In addition, in female 

rats, transections of the pelvic nerve reduce Fos expression induced by 

vaginocervical stimulation or mating in the MPOA, bed nucleus of the stria terminalis, 

ventromedial hypothalamus, and medial amygdala (Pfaus et al., 2006; Rowe and 

Erskine, 1993), indicating that genitosensory afferents in female rats are important in 

regulating those regions.  

We recently used a novel anterograde trans-synaptic viral tracer, herpes 

simplex virus 1 strain 129 (H129) in order to provide a full map of the functional 

genitosensory pathway in rats.  The H129 virus has been found to infect neurons in 

the region where it is injected, replicate in infected cells, travel along axons in an 

anterograde fashion, and release from axon terminals to synaptically connected 

neurons, continuing this process indefinitely (Garner and LaVail, 1999; Zemanick et 

al., 1991).  We injected H129 into the penis and vagina of rats; six days later, animals 

were euthanized and transcardially perfused with fixative.  Brains were removed, 

sectioned at 25µm, and immunohistochemically stained for H129 (rabbit anti-HSV-1, 

1:300,000; Dako) using a peroxidase method with diaminobenzadine as the 

chromagen, then counterstained with cresyl violet. 



Table 1 provides a summary of H129 labeling in supraspinal sites in both 

males and females.  Unsurprisingly, we found that genitosensory information is 

provided to the lumbosacral spinal cord (Figure 1) in both sexes, lending support to 

the well-established role of the lumbosacral spinal cord in the regulation of somatic 

genital reflexes. We also observed H129 labeling in the ventrolateral medulla 

(including the nPGi) in both sexes (Figure 2), indicating that genitosensory 

information could be directly modulating descending inhibition of somatic genital 

reflexes via the nPGi.  Within the PAG, males exhibited H129 labeling in both the 

lateral and ventrolateral portions, with only lateral labeling observed in females.  This 

result is interesting in the context of the PAG as a known integrator of cardiovascular, 

nociceptive and sexual behavior (Holstege, 1992; Holstege and Georgiadis, 2004; 

Murphy et al., 1999; Vanderhorst and Holstege, 1995).   Thalamic H129 labeling was 

observed in the SPFpc nucleus in male but not females.  As copulation-induced Fos 

expression in the SPFpc has been observed in both sexes (Coolen et al., 2003a), our 

results suggest that in females, such Fos expression is reflective of motor output 

rather than sensory input.  We also observed prominent labeling within the PVN in 

both sexes (Figure 3; see next section for discussion of this finding), and labeling in 

the central amygdala was only observed in males (Figure 3).  The central amygdala 

plays a role in anxiety/arousal (McEwen, 2007) and this result suggests that such 

activity could be modulated by genitosensory information.  Interestingly, ventro-orbital 

cortical (VO) labeling was only observed in males (Figure 4).  The VO has been 

shown to be active during sexual behavior in men as evidenced by functional 

magnetic resonance imaging (Holstege et al., 2003; Hu et al., 2008; Karama et al., 

2002; Walter et al., 2008) and might represent a sexual-behavior specific percept, or 

modulator of executive function, in both rats and humans. The sex differences within 



our functional genitosensory maps imply that responses to genitosensory stimuli 

could be very different for males versus females.  Indeed, well-established 

phenomenon regarding neuroendocrine changes in rats as a result of sexual 

behavior exist.  For example, vaginocervical stimulation or mating in female rats 

produces pregnancy-promoting changes to neuroendocrine function with the 

establishment of pseudopregnancy (Castro-Vasquez and Carreno, 1981).   

 

Social neuropeptide contributions to somatic genital reflexes 

The neuropeptides/hormones oxytocin (OT) and arginine vasopressin (AVP) 

have both peripheral and central actions in mammals, including humans.  In both rats 

and humans, OT and AVP are found in the PVN with projections to the posterior 

pituitary, as well as central brain regions (Hawthorn et al., 1985; Nilaver et al., 1980; 

Sofroniew, 1980; Swaab et al., 1975; Swanson and Sawchenko, 1980).  OT has long 

been known to be important in the initiation of vaginal muscle contractions during 

birth (de Geest et al., 1985), as well as for its facilitatory role in milk ejection during 

breast feeding (Freund-Mercier et al., 1988).  AVP (also known as antidiuretic 

hormone) plays a key role in water retention with its effects on the kidney (Jard et al., 

1984).  

 In addition to these peripheral actions, there has been increasing interest in 

recent years of the central role of OT and AVP in the control of social behavior in 

mammals.  OT has been linked to the control of social behavior in mammals 

(Ackerman et al., 1997; Consiglio and Lucion, 1996; Donaldson and Young, 2008; 

Phelps et al., 2010; Ross and Young, 2009; Veenema and Neumann, 2008), with 

special focus on the role of OT in the formation of pair-bonds (Hammock and Young, 

2006; Macdonald and Macdonald, 2010; Young et al., 2005), as well as its role in 



sexual behavior (Baskerville and Douglas, 2008). For example, in both humans and 

rats, OT is released into the blood as a result of sexual behavior (Carmichael et al., 

1987; Ivell et al., 1997; Stoneham et al., 1985). AVP has also been linked to social 

behavior in mammals (Donaldson and Young, 2008; Heinrichs et al., 2009), including 

pair-bonding (Hammock and Young, 2006), as well as aggression (Gobrogge et al., 

2009).   

OT has also been implicated in the control of genital reflexes.  Systemic or 

intracerebroventricular OT administration decreases ejaculation latency and the post-

ejaculatory interval in male rats (Arletti et al., 1985) and intracerebroventricular OT 

antagonsists block ejaculation (Argiolas et al., 1988).  The effect of OT on ejaculation 

is also more pronounced in sexually “sluggish” male rats than in those with vigorous 

sexual responses (Arletti et al., 1990).  Moreover, PVN OT cells exhibit sexual 

behavior-induced Fos immunoreactivity  (Witt and Insel, 1994) in male rats.  

Interestingly, lesions of parvocellular PVN neurons in male rats reduces OT 

expression in the spinal cord, but does not affect ejaculation, but rather decreases 

the amount of semen emitted (Ackerman et al., 1997).  Consistent with this result, 

PVN OT cells are only marginally labeled after trans-synaptic retrograde tracer 

injection into the bulbospongiosus muscle in male rats (Tang et al., 1999), suggesting 

that PVN OT is not involved in the control of the somatic genital reflexes, but rather 

autonomic genital reflexes.  However, other work has found that peripheral OT 

antagonist administration to male rats reduces BS muscle contractions, and 

administration of the OT antagonist to the spinal cord at the L6 level, but not the T13 

level, reduces bulbospongiosus muscle contractions and ejaculation (Clement et al., 

2008).  Intranasal or I.V. administration of OT to men does not alter ejaculation 

latency or semen quantity (Byrne et al., 2003; Walch et al., 2001), although there is 



one case report of anorgasmia in a man being effectively treated with intranasal OT 

(Ishak et al., 2008).  From these seemingly inconsistent results, it appears that there 

are subsets of PVN OT neurons associated with autonomic genital reflexes, and 

somatic genital reflexes. 

We have shown that the PVN provides robust projections (that are active 

during sexual behavior) to the nPGi (Normandin and Murphy, 2008) and that the PVN 

receives genitosensory input (as described in the preceding section).  This places the 

PVN in a unique functional anatomical position to release OT and/or AVP as a result 

of sexual behavior to regulate both sociosexual behavior and genital reflexes. 

To explore the possibility of the PVN as an integrator of genitosensory input 

and behavioral output, tissue from our intra-genital H129- and intra nPGi FG-injected 

animals were immunohistochemically stained for H129 (rabbit anti-HSV-1, 1:300,000; 

Dako) or FG (rabbit anti-FG, 1:30,000; Chemicon) with a fluorescent-labeled 

secondary antibody (Cy2 goat anti-rabbit; Jackson Immunoresearch) and OT (mouse 

anti-oxytocin, 1:100,000; Millipore) or AVP (guinea pig anti-vasopressin, 1:40,000; 

Peninsula) with a fluorescent-labeled secondary antibody (Texas Red giant anti-

mouse or guinea pig; Jackson Immunoresearch). 

The pattern of labeling of PVN cells that project to the nPGi or receive 

genitosensory information was remarkably similar in both sexes (Figure 5). As our 

tracing was conducted in separate animals, we cannot definitively say that the same 

PVN cells project to both the nPGi and receive genitosensory information. However, 

given that the pattern of labeling of the two circuits is so strikingly similar throughout 

the PVN, it is likely such labeling represents the same cells.   

In the more caudal sections of the PVN, some FG labeled cells co-localized 

with OT labeled cells in both sexes (Figure 6), and such co-localization occurred in 



mostly parvocellular and some magnocellular cells.  Such co-localization implies that 

OT could be a modulator of genital reflexes through the nPGi.  Inhibition of male rat 

sexual behavior by the selective serotonin reuptake inhibitor fluoxetine can be 

reversed by administration of OT (Cantor et al., 1999), and it is possible that such an 

effect could be mediated by the circuit we have delineated here.  Indeed, OT fibers 

are present in the nPGi in both sexes (unpublished observation), and PVN OT cells 

also project to the spinal cord motor neurons involved in genital reflexes in male rats 

(Tang et al., 1998) as previously mentioned. 

H129 labeled cells in the caudal portion of the PVN co-localized with OT 

(Figure 7), and these cells appear to co-localize with OT to a greater degree in 

females.  In contrast to OT co-localization with PVN cells projecting to the nPGi, OT 

co-localization with PVN cells receiving genitosensory information was primarily 

magnocellular.  The difference in the co-localization of OT with our tracers within 

different subsets of PVN cells implies separate functional connectivity.  It is possible 

that the magnocellular OT cells that receive genitosensory information further project 

to forebrain regions involved in social behavior, whereas the parvocellular OT cells 

projecting to the nPGi participate in the regulation of somatic genital reflexes.  

Supporting this idea, Ross et al. (2009) found that in voles, magnocellular OT cells 

project to the nucleus accumbens.  In addition, OT in the accumbens is critical for the 

expression of mating-induced pair-bonding in female voles (Liu and Wang, 2003) and 

magnocellular oxytocinergic PVN cells that receive genitosensory information may 

therefore represent the functional anatomical link between mating and pair-bonding. 

Neither FG labeled nor H129 labeled cells in the PVN co-localized with AVP in 

either sex with the exception of one or two cells.  This result is not surprising given 

that AVP fibers are not found in the nPGi (unpublished observations), and no 



evidence of vasopressinergic modulation of genital reflexes has been described.  

However, AVP is an important mediator of mating-induced pair-bonding in male voles 

(Liu et al., 2001) and one might expect that PVN cells receiving genitosensory 

information might contain AVP, which we did not observe.  This implies that there is 

another mediator between genitosensation and AVP release. 

The majority of PVN cells projecting to the nPGi and PVN cells receiving 

genitosensory information did not contain OT.  This is an important finding suggesting 

that these circuits, with respect to the PVN, also have other neurochemical 

components the need to be characterized. 

 

Conclusion 

Sexual dysfunction is a common problem in both men and women.  Up to 31% 

of men and 43% of women will experience sexual dysfunction in their lifetime 

(Laumann et al., 1999).  Such dysfunctions can include loss of sex drive, premature 

ejaculation, delayed ejaculation, anorgasmia, involuntary vaginal spasms, and 

vaginal pain during intercourse (Breiner, 2004).  These dysfunctions have a large 

impact on fertility and quality of life experiences.  These sexual dysfunctions all have 

an underlying dysregulation of genital reflexes in common.  By identifying the regions 

of the brain that regulate somatic genital reflexes, we can provide new insights and 

treatment targets for people with sexual dysfunction. 

The lumbosacral spinal cord is the final source of output to the genital 

musculature, and activity at the level of the lumbosacral motoneuron pools is 

influenced by a number of descending brain systems to regulate somatic genital 

reflexes.  The LSt cells of the spinal cord, in conjunction with the SPFpc of the 

thalamus, appear to coordinate the rhythmic contractions of the genital musculature 



through these lumbosacral targets.  In addition, these lumbosacral targets are under 

tonic inhibition provided by the nPGi, which in turn is receives projections from the 

hypothalamus and PAG in a sexually dimorphic pattern.  Ascending genitosensory 

information appears to directly influence these lumbosacral targets but also ascends 

to many regions associated with the regulation of sexual behavior, including the OT- 

and AVP-containing neurons in the PVN. These data are summarized in Figure 8. 

The neural/neurochemical regions described may prove to be important targets for 

treating sexual dysfunction in people. 
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Table 1 – Abundance of H129 labeling in supraspinal sites of male and female 
rats as a result of genital inoculation 

 

The relative density of H129 labeling in each region as represented by the crosses is 
as follows: + = a few cells, ++ = 5 to 25 cells, +++ = >25 cells.  VO = ventral orbital 
cortex, AIC = anterior insular cortex, M1/S1 = primary somatomotor cortex, BNST = 
bed nucleus of the stria terminalis, CeM = central amygdala, VP = ventral posterior 
thalamic nucleus, MPG = medial globus pallidus, LPG = lateral globus pallidus, PVN 
= paraventricular hypothalamic nucleus, LH = lateral hypothalamus, MCLH = 
magnocellular nucleus of the lateral hypothalamus, PeF = perifornical nucleus, Sub = 
subicular nucleus, ZI = zona incerta, VPM = posteromedial ventral nucleus of the 
thalamus, VA = ventral anterior thalamic nucleus, SPFpc = parvocellular 
subparafascicular nucleus, SNR = substantia nigra, PF = paraflocculus, LPAG = 
lateral periaqueductal gray, VLPAG = ventrolateral periaqueductal gray, RPC = 
parvocellular red nucleus, RMC = magnocellular red nucleus, IMLF = interstitial 
nucleus of the medial longitudinal fasciculus, PL = paralemniscal nucleus, DpMe = 
deep mesencephalic nucleus, DpG = deep gray layer of the superior colliculus, CnF 
= cuniform nucleus, VLTg = ventrolateral tegmental area, PB = parabrachial nucleus, 
NRM = nucleus raphe magnus, DMTg = dorsomedial tegmental area, LC = locus 
coeruleus, Mo5 = motor trigeminal nucleus, A5 = A5 noradrenergic cell group, nPGi = 
nucleus paragigantocellularis, PnC = caudal pontine reticular nucleus, Sol = solitary 
nucleus, PCRt = parvocellular reticular nucleus.  



 

Figure 1 - Photomicrographs of lumbosacral spinal cord regions receiving 
genitosensory information in a male and female rat 
Photomicrographs of H129 labeling in the lumbosacral spinal cord of a male (left) and 
female (right) rat, as a result of genital inoculation. Note the robust labeling within 
most spinal cord lamina. The center panel is a spinal atlas diagram provided for 
reference purposes (Paxinos and Watson, 2005), 1-10 = spinal cord lamina 1 through 
10.   

  



 

Figure 2 - Photomicrographs of brainstem regions receiving genitosensory 
information in a male and female rat 
Photomicrographs of H129 labeling in the brainstem of a male (left) and female (right) 
rat, as a result of genital inoculation. Note the robust labeling within the 
rostroventrolateral medulla in both sexes, and more dorsal brainstem regions in 
males.  Discrete labeling within the nPGi was observed in both sexes.  4v = 4th 
ventricle, nPGi = nucleus paragigantocellularis, py = pyramidal tract. 
  



 

 

 
Figure 3 - Photomicrographs of diencephalic regions receiving genitosensory 
information in a male and female rat 
Photomicrographs of H129 labeling in the diencephalon of a male (left) and female 
(right) rat, as a result of genital inoculation, show robust labeling in the thalamus and 
central amygdala in a male but not a female rat.  Note that both sexes show robust 
H129 labeling in the paraventricular hypothalamic nucleus (PVN).  3v = 3rd ventricle, 
CeM = central amygdala, opt = optic tract, ZI = zona incerta.  



 

 

Figure 4 - Photomicrograph of a cortical region receiving genitosensory 
information in a male rat 
Photomicrograph overlaid on rat brain atlas image (Paxinos and Watson, 1997) of 
H129 labeling in the cerebral cortex of a male rat, as a result of genital inoculation, 
shows discrete labeling in ventro-orbital granular cells.  fmi = forceps minor of the 
corpus callosum, Pir = piriform cortex, VO = ventro-orbital cortex. 
  



 

 

Figure 5 - Photomicrographs of PVN cells projecting to the nPGi in comparison 
to PVN cell receiving genitosensory information in a male and female rat 
Photomicrographs of the PVN indicate that the number of FG+ cells (green) 
increased moving caudally through the PVN in a male (left) and a female (right) rat.  
The number of H129+ cells (pseudocolor purple) also increased moving caudally 
through the PVN in a male and a female rat.  Note the concordance of labeling 
between those cells projecting to the nPGi (FG+) and those receiving genitosensory 
information (H129+).  A-P = anterior-posterior, 3V = third ventricle, FG = Fluorogold, 
H129 = herpes simplex virus strain 129 
  



 

Figure 6 - Photomicrographs of PVN cells projecting to the nPGi and co-
localization with oxytocin in a male and female rat 
Photomicrographs of the PVN at a lower magnification (top) and higher magnification 
(bottom) show that FG+ cells (green) co-localized with oxytocin cells (red) in a male 
(left) and a female (right) rat.  Arrows indicate co-localization.  3V = third ventricle, FG 
= Fluorogold, OT = oxytocin. 
  



 

 

Figure 7 - Photomicrographs of PVN that receive genitosensory information 
and co-localization with oxytocin in a male and female rat 
Photomicrographs of the PVN at a lower magnification (top) and higher magnification 
(bottom) show that H129+ cells (green) co-localized with oxytocin cells (red) in a 
male (left) and a female (right) rat.  Arrows indicate co-localization.  3V = third 
ventricle, H129 = herpes simplex virus strain 129, OT = oxytocin. 
  



 

Figure 8 – Schematic of the ins and outs of somatic genital reflexes in rats 
The schematic illustrates the inputs, outputs, and relative physiology of the brain, 
spinal cord, and somatic regions discussed in the text. 
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