195 research outputs found

    Spatially governed climate factors dominate management in determining the quantity and distribution of soil organic carbon in dryland agricultural systems

    Get PDF
    Few studies describe the primary drivers influencing soil organic carbon (SOC) stocks and the distribution of carbon (C) fractions in agricultural systems from semi-arid regions; yet these soils comprise one fifth of the global land area. Here we identified the primary drivers for changes in total SOC and associated particulate (POC), humus (HOC) and resistant (ROC) organic C fractions for 1347 sample points in the semi-arid agricultural region of Western Australia. Total SOC stock (0–0.3 m) varied from 4 to 209 t C ha−1 with 79% of variation explained by measured variables. The proportion of C in POC, HOC and ROC fractions averaged 28%, 45% and 27% respectively. Climate (43%) and land management practices (32%) had the largest relative influence on variation in total SOC. Carbon accumulation was constrained where average daily temperature was above 17.2 °C and annual rainfall below 450 mm, representing approximately 42% of the 197,300 km2 agricultural region. As such large proportions of this region are not suited to C sequestration strategies. For the remainder of the region a strong influence of management practices on SOC indicate opportunities for C sequestration strategies associated with incorporation of longer pasture phases and adequate fertilisation

    Response of microbial biomass and CO2-C loss to wetting patterns are temperature dependent in a semi-arid soil

    Get PDF
    One of the greatest contemporary challenges in terrestrial ecology is to determine the impact of climate change on the world’s ecosystems. Here we investigated how wetting patterns (frequency and intensity) and nutrient additions altered microbial biomass and CO2-C loss from a semi-arid soil. South-western Australia is predicted to experience declining annual rainfall but increased frequency of summer rainfall events when soil is fallow. Agricultural soils (0–10 cm at 10 °C or 25 °C) received the same total amount of water (15 mL over 30 days) applied at different frequency; with either nil or added nitrogen and phosphorus. Smaller more frequent wetting applications resulted in less CO2-C loss (P < 0.001); with cumulative CO2-C loss 35% lower than a single wetting event. This coincided with increased microbial biomass C at 25 °C but a decline at 10 °C. Increasing nutrient availability decreased CO2-C loss only under a single larger wetting event. While bacterial and fungal abundance remained unchanged, archaeal abundance and laccase-like copper monooxidase gene abundance increased with more frequent wetting at 25 °C. Our findings suggest smaller more frequent summer rainfall may decrease CO2 emissions compared to infrequent larger events; and enhance microbial C use efficiency where sufficient background soil organic matter and nutrients are available

    Capacity for increasing soil organic carbon stocks in dryland agricultural systems

    Get PDF
    Assessment of the potential for soil carbon sequestration based on soil type, land use, and climate scenarios is crucial for determining which agricultural regions can be used to help mitigate increasing atmospheric CO2 concentrations. In semi-arid and Mediterranean-type environments, soil organic carbon (SOC) storage capacity is rarely achieved under dryland agricultural systems. We aimed to assess both actual (measured) and attainable (modelled) SOC stock values for the dryland agricultural production zone of Western Australia. We measured actual SOC storage (0–0.3 m) and known constraints to plant growth for a range of soils types (3–27% clay) and land uses (continuous cropping, mixed cropping, annual and perennial pastures) on the Albany sand plain in Western Australia (n = 261 sites), spanning a rainfall gradient of 421–747 mm. Average actual SOC stocks for land use–soil type combinations ranged from 33 to 128 t C/ha (0–0.3 m). Up to 89% of the variability in actual SOC stock was explained by soil depth, rainfall, land use, and soil type. The scenarios modelled with Roth-C predicted that attainable SOC values of 59–140 t C/ha (0–0.3 m) could be achieved within 100 years. This indicated an additional storage capacity of 5–45% (7–27 t C/ha) depending on the specific land use–soil type combination. However, actual SOC in the surface 0–0.1 m was 95 to >100% of modelled attainable SOC values, suggesting this soil depth was ‘saturated’. Our findings highlight that additional SOC storage capacity in this region is limited to the subsoil below 0.1 m. This has implications for management strategies to increase SOC sequestration in dryland agricultural systems, as current practices tend to concentrate organic matter near the soil surface

    Microbial respiration, but not biomass, responded linearly to increasing light fraction organic matter input: Consequences for carbon sequestration

    Get PDF
    Rebuilding ‘lost’ soil carbon (C) is a priority in mitigating climate change and underpinning key soil functions that support ecosystem services. Microorganisms determine if fresh C input is converted into stable soil organic matter (SOM) or lost as CO2. Here we quantified if microbial biomass and respiration responded positively to addition of light fraction organic matter (LFOM, representing recent inputs of plant residue) in an infertile semi-arid agricultural soil. Field trial soil with different historical plant residue inputs [soil C content: control (tilled) = 9.6 t C ha−1 versus tilled + plant residue treatment (tilled + OM) = 18.0 t C ha−1] were incubated in the laboratory with a gradient of LFOM equivalent to 0 to 3.8 t C ha−1 (0 to 500% LFOM). Microbial biomass C significantly declined under increased rates of LFOM addition while microbial respiration increased linearly, leading to a decrease in the microbial C use efficiency. We hypothesise this was due to insufficient nutrients to form new microbial biomass as LFOM input increased the ratio of C to nitrogen, phosphorus and sulphur of soil. Increased CO2 efflux but constrained microbial growth in response to LFOM input demonstrated the difficulty for C storage in this environment

    Root exudate carbon mitigates nitrogen loss in a semi-arid soil

    Get PDF
    AbstractThe need for increased food production to support the growing global population requires more efficient nutrient management and prevention of nitrogen (N) losses from both applied fertiliser and organic matter (OM) decomposition. This is particularly important in semi-arid rainfed cropping soils, where soil water and temperature are the dominant drivers of N cycling rather than agricultural management. Here we used 14C and 15N techniques to examine how peptide/amino acid turnover, gross and net N transformation rates and nitrous oxide (N2O) emissions responded to long-term plant residue additions and/or short-term root exudate additions. Soil was collected from a semi-arid rainfed field trial with one winter crop per year followed by a summer fallow period, where additional inputs of straw/chaff over 10 years had increased total soil organic C (SOC) by 76% compared to no extra additions (control). These field soils were incubated in the laboratory with or without a synthetic root exudate mixture at a range of temperatures reflecting regional field conditions (5–50 °C). Long-term plant residue additions (to build up total soil OM) did not decrease the risk of N loss as defined by the nitrification:immobilisation (N:I) ratio at most temperatures, so was not an effective management tool to control N losses. In comparison, short-term root exudate additions decreased the risk of N loss at all temperatures in both the control and plant residue treatment field soils. Increased net N mineralisation and decreased microbial C use efficiency at temperatures greater than 30 °C resulted in significant ammonium (NH4+) accumulation. Microbial decomposers appeared to use amino acid-C for growth but peptide-C for energy production. Findings indicate that the greatest risk of N loss in these semi-arid soils will occur during rains at the start of the growing season, due to inorganic N accumulation over summer fallow when there are high soil temperatures, occasional significant rainfall events and no growing plants to release root exudates. While most attempts to manipulate the soil N cycle have occurred during the winter cropping period, our findings highlight the need to manage N supply during summer fallow if we are to minimise losses to the environment from semi-arid soils

    Competition between plant and bacterial cells at the microscale regulates the dynamics of nitrogen acquisition in wheat (Triticum aestivum)

    Get PDF
    The ability of plants to compete effectively for nitrogen (N) resources is critical to plant survival. However, controversy surrounds the importance of organic and inorganic sources of N in plant nutrition because of our poor ability to visualize and understand processes happening at the root�microbial�soil interface. Using high-resolution nano-scale secondary ion mass spectrometry stable isotope imaging (NanoSIMS-SII), we quantified the fate of 15N over both space and time within the rhizosphere. We pulse-labelled the soil surrounding wheat (Triticum aestivum) roots with either inline image or 15N-glutamate and traced the movement of 15N over 24 h. Imaging revealed that glutamate was rapidly depleted from the rhizosphere and that most 15N was captured by rhizobacteria, leading to very high 15N microbial enrichment. After microbial capture, approximately half of the 15N-glutamate was rapidly mineralized, leading to the excretion of inline image, which became available for plant capture. Roots proved to be poor competitors for 15N-glutamate and took up N mainly as inline image. Spatial mapping of 15N revealed differential patterns of 15N uptake within bacteria and the rapid uptake and redistribution of 15N within roots. In conclusion, we demonstrate the rapid cycling and transformation of N at the soil�root interface and that wheat capture of organic N is low in comparison to inorganic N under the conditions tested

    Leaching of phthalate acid esters from plastic mulch films and their degradation in response to UV irradiation and contrasting soil conditions

    Get PDF
    Phthalate acid esters (PAEs) are commonly used plastic additives, not chemically bound to the plastic that migrate into surrounding environments, posing a threat to environmental and human health. Dibutyl phthalate (DBP) and di(2-ethylhexyl) phthalate (DEHP) are two common PAEs found in agricultural soils, where degradation is attributed to microbial decomposition. Yet the impact of the plastic matrix on PAE degradation rates is poorly understood. Using 14C-labelled DBP and DEHP we show that migration from the plastic matrix into soil represents a key rate limiting step in their bioavailability and subsequent degradation. Incorporating PAEs into plastic film decreased their degradation in soil, DBP (DEHP) from 79% to 21% (9% to <1%), over four months when compared to direct application of PAEs. Mimicking surface soil conditions, we demonstrated that exposure to ultraviolet radiation accelerated PAE mineralisation twofold. Turnover of PAE was promoted by the addition of biosolids, while the presence of plants and other organic residues failed to promote degradation. We conclude that PAEs persist in soil for longer than previously thought due to physical trapping within the plastic matrix, suggesting PAEs released from plastics over very long time periods lead to increasing levels of contamination

    Deep-C storage: Biological, chemical and physical strategies to enhance carbon stocks in agricultural subsoils

    Get PDF
    Due to their substantial volume, subsoils contain more of the total soil carbon (C) pool than topsoils. Much of this C is thousands of years old, suggesting that subsoils offer considerable potential for long-term C sequestration. However, knowledge of subsoil C behaviour and manageability remains incomplete, and subsoil C storage potential has yet to be realised at a large scale, particularly in agricultural systems. A range of biological (e.g. deep-rooting), chemical (e.g. biochar burial) and physical (e.g. deep ploughing) C sequestration strategies have been proposed, but are yet to be assessed. In this review, we identify the main factors that regulate subsoil C cycling and critically evaluate the evidence and mechanistic basis of subsoil strategies designed to promote greater C storage, with particular emphasis on agroecosystems. We assess the barriers and opportunities for the implementation of strategies to enhance subsoil C sequestration and identify 5 key current gaps in scientific understanding. We conclude that subsoils, while highly heterogeneous, are in many cases more suited to long-term C sequestration than topsoils. The proposed strategies may also bring other tangible benefits to cropping systems (e.g. enhanced water holding capacity and nutrient use efficiency). Furthermore, while the subsoil C sequestration strategies we reviewed have large potential, more long-term studies are needed across a diverse range of soils and climates, in conjunction with chronosequence and space-for-time substitutions. Also, it is vital that subsoils are more consistently included in modelled estimations of soil C stocks and C sequestration potential, and that subsoil-explicit C models are developed to specifically reflect subsoil processes. Finally, further mapping of subsoil C is needed in specific regions (e.g. in the Middle East, Eastern Europe, South and Central America, South Asia and Africa). Conducting both immediate and long-term subsoil C studies will fill the knowledge gaps to devise appropriate soil C sequestration strategies and policies to help in the global fight against climate change and decline in soil quality. In conclusion, our evidence-based analysis reveals that subsoils offer an untapped potential to enhance global C storage in terrestrial ecosystems

    Increasing the size of the microbial biomass altered bacterial community structure which enhances plant phosphorus uptake

    Get PDF
    Agricultural production can be limited by low phosphorus (P) availability, with soil P being constrained by sorption and precipitation reactions making it less available for plant uptake. There are strong links between carbon (C) and nitrogen (N) availability and P cycling within soil P pools, with microorganisms being an integral component of soil P cycling mediating the availability of P to plants. Here we tested a conceptual model that proposes (i) the addition of readily-available organic substrates would increase the size of the microbial biomass thus exhausting the pool of easily-available P and (ii) this would cause the microbial biomass to access P from more recalcitrant pools. In this model it is hypothesised that the size of the microbial population is regulating access to less available P rather than the diversity of organisms contained within this biomass. To test this hypothesis we added mixtures of simple organic compounds that reflect typical root exudates at different C:N ratios to a soil microcosm experiment and assessed changes in soil P pools, microbial biomass and bacterial diversity measures. We report that low C:N ratio (C:N = 12.5:1) artificial root exudates increased the size of the microbial biomass while high C:N ratio (C:N = 50:1) artificial root exudates did not result in a similar increase in microbial biomass. Interestingly, addition of the root exudates did not alter bacterial diversity (measured via univariate diversity indices) but did alter bacterial community structure. Where C, N and P supply was sufficient to support plant growth the increase observed in microbial biomass occurred with a concurrent increase in plant yield

    A cross-sectional study of peripartum blood transfusion in the Eastern Cape, South Africa

    Get PDF
    Background. Obstetric haemorrhage (OH) remains a major contributor to maternal morbidity and mortality. Blood transfusion is critical in OH management; yet, data on peripartum transfusion are lacking. A pilot study reported high rates of peripartum transfusion in a sample of South African (SA) hospitals, which was independently associated with HIV status.Objectives. To assess the incidence of peripartum transfusion in a sample of Eastern Cape, SA hospitals to evaluate generalisability of preceding study findings.Methods. Hospital chart reviews were conducted of all deliveries at three large regional hospitals from February to June 2013. Additional clinical data were collected for patients who sustained OH and/or were transfused.Results. A total of 7 234 women were enrolled in the study; 1 988 (27.5%) were HIV-positive. Of the 767 HIV-positive women with a CD4 count &lt;350 cells/μL, 86.0% were on full antiretroviral therapy and 9.9% received drugs for prevention of mother-to-child transmission. The overall transfusion rate was 3.2%, with significant variability by hospital: Frere Hospital (1.5%), Dora Nginza Hospital (3.8%) and Cecilia Makiwane Hospital (4.6%). The number of red blood cell units per transfused patient and per delivery varied significantly by hospital. Bivariate analysis showed significant association between transfusion and HIV status. In a multivariate analysis, controlling for OH, age, mode of delivery, gestational age, parity and birthweight, this association (odds ratio 1.45; 95% confidence interval 0.78 - 2.71) was no longer significant.Conclusion. These findings confirm high rates of peripartum transfusion in SA. While this can be possibly ascribed to variability in practice and patient profile, variation in care and improvement in HIV treatment should be considered
    • …
    corecore