15 research outputs found

    Dissipative hydrodynamics and heavy ion collisions

    Full text link
    Space-time evolution and subsequent particle production from minimally viscous (η/s\eta/s=0.08) QGP fluid is studied using the 2nd order Israel-Stewart's theory of dissipative relativistic fluid. Compared to ideal fluid, energy density or temperature evolves slowly in viscous dynamics. Particle yield at high pTp_T is increased. Elliptic flow on the other hand decreases in viscous dynamics. Minimally viscous QGP fluid found to be consistent with a large number of experimental data.Comment: 8 pages, 13 figures. Revised version of the invited talk at the 20th International conference on Ultra-Relativistic Nucleus Nucleus collisions (Quark Matter 2008), Feb. 4-10, 2008, Jaipur, Indi

    Hydrodynamics at RHIC -- how well does it work, where and how does it break down?

    Full text link
    I review the successes and limitations of the ideal fluid dynamic model in describing hadron emission spectra from Au+Au collisions at the Relativistic Heavy Ion Collider (RHIC).Comment: 8 pages, 4 figures. Invited talk presented at Strange Quark Matter 2004 (Cape Town, Sep. 15-20, 2004). Proceedings to appear in Journal of Physics

    New Formulation of Causal Dissipative Hydrodynamics: Shock wave propagation

    Full text link
    The first 3D calculation of shock wave propagation in a homogeneous QGP has been performed within the new formulation of relativistic dissipative hydrodynamics which preserves the causality. We found that the relaxation time plays an important role and also affects the angle of Mach cone.Comment: 4 pages, 1 figure, Proceedings of Quark Matter 200

    Second Order Dissipative Fluid Dynamics for Ultra-Relativistic Nuclear Collisions

    Get PDF
    The M\"uller-Israel-Stewart second order theory of relativistic imperfect fluids based on Grad's moment method is used to study the expansion of hot matter produced in ultra-relativistic heavy ion collisions. The temperature evolution is investigated in the framework of the Bjorken boost-invariant scaling limit. The results of these second-order theories are compared to those of first-order theories due to Eckart and to Landau and Lifshitz and those of zeroth order (perfect fluid) due to Euler.Comment: 5 pages, 4 figures, size of y-axis tick marks for Figs. 3 and 4 fixe

    Hydrodynamics and Flow

    Full text link
    In this lecture note, we present several topics on relativistic hydrodynamics and its application to relativistic heavy ion collisions. In the first part we give a brief introduction to relativistic hydrodynamics in the context of heavy ion collisions. In the second part we present the formalism and some fundamental aspects of relativistic ideal and viscous hydrodynamics. In the third part, we start with some basic checks of the fundamental observables followed by discussion of collective flow, in particular elliptic flow, which is one of the most exciting phenomenon in heavy ion collisions at relativistic energies. Next we discuss how to formulate the hydrodynamic model to describe dynamics of heavy ion collisions. Finally, we conclude the third part of the lecture note by showing some results from ideal hydrodynamic calculations and by comparing them with the experimental data.Comment: 40 pages, 35 figures; lecture given at the QGP Winter School, Jaipur, India, Feb.1-3, 2008; to appear in Springer Lecture Notes in Physic

    Nonequilibrium models of relativistic heavy-ion collisions

    Get PDF
    To be published in J. Phys. G - Proceedings of SQM 2004 : We review the results from the various hydrodynamical and transport models on the collective flow observables from AGS to RHIC energies. A critical discussion of the present status of the CERN experiments on hadron collective flow is given. We emphasize the importance of the flow excitation function from 1 to 50 A.GeV: here the hydrodynamic model has predicted the collapse of the v2-flow ~ 10 A.GeV; at 40 A.GeV it has been recently observed by the NA49 collaboration. Since hadronic rescattering models predict much larger flow than observed at this energy we interpret this observation as evidence for a first order phase transition at high baryon density r b. Moreover, the connection of the elliptic flow v2 to jet suppression is examined. It is proven experimentally that the collective flow is not faked by minijet fragmentation. Additionally, detailed transport studies show that the away-side jet suppression can only partially (< 50%) be due to hadronic rescattering. Furthermore, the change in sign of v1, v2 closer to beam rapidity is related to the occurence of a high density first order phase transition in the RHIC data at 62.5, 130 and 200 A.GeV

    A consistent first-order model for relativistic heat flow

    Full text link
    This paper revisits the problem of heat conduction in relativistic fluids, associated with issues concerning both stability and causality. It has long been known that the problem requires information involving second order deviations from thermal equilibrium. Basically, any consistent first-order theory needs to remain cognizant of its higher-order origins. We demonstrate this by carrying out the required first-order reduction of a recent variational model. We provide an analysis of the dynamics of the system, obtaining the conditions that must be satisfied in order to avoid instabilities and acausal signal propagation. The results demonstrate, beyond any reasonable doubt, that the model has all the features one would expect of a real physical system. In particular, we highlight the presence of a second sound for heat in the appropriate limit. We also make contact with previous work on the problem by showing how the various constraints on our system agree with previously established results.Comment: RevTeX, 1 eps Figur

    Space-time evolution and HBT analysis of relativistic heavy ion collisions in a chiral SU(3) x SU(3) model

    Full text link
    The space-time dynamics and pion-HBT radii in central heavy ion-collisions at CERN-SPS and BNL-RHIC are investigated within a hydrodynamic simulation. The dependence of the dynamics and the HBT-parameters on the EoS is studied with different parametrisations of a chiral SU(3) sigma-omega model. The selfconsistent collective expansion includes the effects of effective hadron masses, generated by the nonstrange and strange scalar condensates. Different chiral EoS show different types of phase transitions and even a crossover. The influence of the order of the phase transition and of the difference in the latent heat on the space-time dynamics and pion-HBT radii is studied. A small latent heat, i.e. a weak first-order chiral phase transition, or even a smooth crossover leads to distinctly different HBT predictions than a strong first order phase transition. A quantitative description of the data, both at SPS energies as well as at RHIC energies, appears difficult to achieve within the ideal hydrodynamical approach using the SU(3) chiral EoS. A strong first-order quasi-adiabatic chiral phase transition seems to be disfavored by the pion-HBT data from CERN-SPS and BNL-RHIC

    Derivation of fluid dynamics from kinetic theory with the 14--moment approximation

    Full text link
    We review the traditional derivation of the fluid-dynamical equations from kinetic theory according to Israel and Stewart. We show that their procedure to close the fluid-dynamical equations of motion is not unique. Their approach contains two approximations, the first being the so-called 14-moment approximation to truncate the single-particle distribution function. The second consists in the choice of equations of motion for the dissipative currents. Israel and Stewart used the second moment of the Boltzmann equation, but this is not the only possible choice. In fact, there are infinitely many moments of the Boltzmann equation which can serve as equations of motion for the dissipative currents. All resulting equations of motion have the same form, but the transport coefficients are different in each case.Comment: 15 pages, 3 figures, typos fixed and discussions added; EPJA: Topical issue on "Relativistic Hydro- and Thermodynamics

    Hydrodynamic afterburner for the CGC at RHIC

    Full text link
    Firstly, we give a short review about the hydrodynamic model and its application to the elliptic flow phenomena in relativistic heavy ion collisions. Secondly, we show the first approach to construct a unified model for the description of the dynamics in relativistic heavy ion collisions.Comment: 15 pages, 7 figures, invited talk presented at "Hot Quarks 2004", July 18-24, 2004, Taos Valley, NM, US
    corecore