17 research outputs found
Investigation into the removal of a formaldehyde-free easy care cross-linking agent from cotton and the potential for subsequent regeneration of lyocell-type fibres
1,2,3,4-Butane tetracarboxylic acid (BTCA)-treated cotton fabrics were immersed in alkali for increasing time periods and the effectiveness of alkali in removing the cross-linking agent was investigated by surface (X-ray photoelectron spectroscopy, XPS) analysis, attenuated total reflectance Fourier transform infrared spectroscopy and solubility in specific solvents. The cellulose yield after the chemical ‘stripping’ processes was established and the effect of the alkali treatments on the degree of polymerization of the resultant cellulose determined. Surface analyses and solubility tests suggested that the alkali alone could successfully remove the BTCA from the crease resist-treated cotton fabric and produced a commercially viable yield of cellulose
Facile control of silica nanoparticles using a novel solvent varying method for the fabrication of artificial opal photonic crystals
In this work, the Stöber process was applied to produce uniform silica nanoparticles (SNPs) in the meso-scale size range. The novel aspect of this work was to control the produced silica particle size by only varying the volume of the solvent ethanol used, whilst fixing the other reaction conditions. Using this one-step Stöber-based solvent varying (SV) method, seven batches of SNPs with target diameters ranging from 70 to 400 nm were repeatedly reproduced, and the size distribution in terms of the polydispersity index (PDI) was well maintained (within 0.1). An exponential equation was used to fit the relationship between the particle diameter and ethanol volume. This equation allows the prediction of the amount of ethanol required in order to produce particles of any target diameter within this size range. In addition, it was found that the reaction was completed in approximately 2 h for all batches regardless of the volume of ethanol. Structurally coloured artificial opal photonic crystals (PCs) were fabricated from the prepared SNPs by self-assembly under gravity sedimentation