76 research outputs found
Recommended from our members
A Fungal Glycosphingolipid Directly Activates Natural Killer T Cells and Rapidly Induces Airways Disease
Aspergillus fumigatusis a saprophytic fungus that is ubiquitous in the environment and commonly associated with allergic sensitization and severe asthma in humans. Although A. fumigatus is recognized by multiple microbial pattern recognition receptors, we identified and synthesized an A. fumigatus glycosphingolipid, asperamide B, that directly activated invariant natural killer T (iNKT) cells in vitro in a CD1d-restricted, MyD88- and dectin-1-independent fashion. Moreover, asperamide B, when loaded into CD1d, directly stained, and was sufficient to activate, iNKT cells. In vivo, asperamide B rapidly induced airway hyperreactivity, a cardinal feature of asthma, by activating pulmonary iNKT cells in an IL-33-ST2-dependent fashion. Asperamide B is thus the first fungal glycolipid found to directly activate iNKT cells. These results extend the range of microorganisms that can be directly detected by iNKT cells to the Kingdom of Fungi, and may explain the effectiveness of A. fumigatus in causing severe chronic respiratory diseases in humans
Recommended from our members
IL-17 producing innate lymphoid cells and the NLRP3 inflammasome facilitate obesity-associated airway hyperreactivity
Obesity is associated with the development of asthma and considerable asthma-related healthcare utilization. To understand the immunological pathways that lead to obesity-associated asthma, we fed mice a high fat diet for 12 weeks, which resulted in obesity and the development of airway hyperreactivity (AHR), a cardinal feature of asthma. This AHR depended on innate immunity, since it occurred in obese Rag−/− mice, and on IL-17A and the NLRP3 inflammasome, since it did not develop in obese Il17−/− or Nlrp3−/− mice. The AHR was also associated with the presence in the lungs of CCR6+ innate lymphoid cells producing IL-17A (ILC3 cells), which could by themselves mediate AHR when adoptively transferred into Rag2−/− Il2rγ−/− mice. IL-1β played an important role by expanding the ILC3 cells, and treatment to block the function of IL-1β abolished obesity-induced AHR. Since we found ILC3-like cells in the bronchoalveolar lavage fluid of human patients with asthma, we suggest that obesity-associated asthma is facilitated by inflammation mediated by NLRP3, IL-1β and ILC3 cells
Mécanismes de sensibilisation par voie aérienne (interactions entre cellules épithéliales bronchiques et cellules dendritiques)
LILLE2-BU Santé-Recherche (593502101) / SudocSudocFranceF
Inflammation-Generated Extracellular Matrix Fragments Drive Lung Metastasis
Mechanisms explaining the propensity of a primary tumor to metastasize to a specific site still need to be unveiled, and clinical studies support a link between chronic inflammation and cancer dissemination to specific tissues. Using different mouse models, we demonstrate the role of inflammation-generated extracellular matrix fragments ac-PGP (N-acetyl-proline-glycine-proline) on tumor cells dissemination to lung parenchyma. In mice exposed to cigarette smoke or lipopolysaccharide, lung neutrophilic inflammation produces increased levels of MMP-9 (matrix metalloproteinase 9) that contributes to collagen breakdown and allows the release of ac-PGP tripeptides. By silencing CXCR2 gene expression in tumor cells, we show that these generated ac-PGP tripeptides exert a chemotactic activity on tumor cells in vivo by binding CXCR2
Production of Interleukin-20 cytokines limits bacterial clearance and lung inflammation during infection by Streptococcus pneumoniaeResearch in context
Background: Streptococcus pneumoniae is the leading cause of bacterial pneumonia worldwide. Previous reports showed that IL-20 cytokines (IL-19, IL-20 and IL-24) are induced and have an immuno-regulatory function during cutaneous infection. In the current study, our aim was to demonstrate the implication of IL-20 cytokines and their receptors and their role during experimental pneumococcal infection. Methods: C57BL/6 mice were infected with S. pneumoniae by intranasal route. The bacterial burden, the immune response and the cytokine production were evaluated after treatment with an anti-IL-20 receptor-b (IL-20Rb) neutralizing antibody (anti-IL-20Rb). Findings: Of interest, expression of IL-20 cytokines mRNA and protein were transiently increased in the lung tissue during infection. Blocking of the IL-20Rb decreased the bacterial burden both in the bronchoalveolar lavage and the lung whereas there was no significant drop in the blood. This treatment also reduced the pulmonary damages (as shown by the alveolar wall thickening), the recruitment of neutrophils and dendritic cells, and the levels of the pro-inflammatory cytokines IL-1β and IL-6 in the lung. Administration of the anti-IL-20Rb antibody enhanced the synthesis of the antibacterial peptide LCN2. However, this effect is transient and did not affect the survival of the infected mice. Interpretation: Collectively, this study highlights the implication of IL-20 related cytokines during lung infection by S. pneumoniae and might have therapeutic applications in bacterial pneumonia. Fundings: This work was supported by CNRS, INSERM, INSERM-transfert, the University of Lille and the Fondation du Souffle (Paris, France). Keywords: Pneumonia, Cytokines, Cytokine receptor, Immunomodulation, Antimicrobial peptide
Insights into the Mechanism and Catalysis of Peptide Thioester Synthesis by Alkylselenols Provide a New Tool for Chemical Protein Synthesis
Posté sur ChemRxiv le 2021-02-11.While thiol-based catalysts are widely employed for chemical protein synthesis relying on peptide thioester chemistry, this is less true for selenol-based catalysts whose development is in its infancy. In this study, we compared different selenols derived from the selenocysteamine scaffold for their capacity to promote thiol-thioester exchanges in water at mildly acidic pH and the production of peptide thioesters from bis(2-sulfanylethyl)amido (SEA) peptides. The usefulness of a selected selenol compound is illustrated by the total synthesis of a biologically active human chemotactic protein, which plays an important role in innate and adaptive immunit
Th17 cytokines: novel potential therapeutic targets for COPD pathogenesis and exacerbations
International audienceChronic obstructive pulmonary disease (COPD) is a chronic inflammatory disease of the airways caused mainly by cigarette smoke exposure. COPD progression is marked by exacerbations of the disease, often associated with infections. Recent data show the involvement in COPD pathophysiology of interleukin (IL)-17 and IL-22, two cytokines that are important in the control of lung inflammation and infection. During the initiation and progression of the disease, increased IL-17 secretion causes neutrophil recruitment, leading to chronic inflammation, airways obstruction and emphysema. In the established phase of COPD, a defective IL-22 response facilitates pathogen-associated infections and disease exacerbations. Altered production of these cytokines involves a complex network of immune cells and dysfunction of antigen-presenting cells. In this review, we describe current knowledge on the involvement of IL-17 and IL-22 in COPD pathophysiology at steady state and during exacerbations, and discuss implications for COPD management and future therapeutic approaches
Insights into the Mechanism and Catalysis of Peptide Thioester Synthesis by Alkylselenols Provide a New Tool for Chemical Protein Synthesis
While thiol-based catalysts are widely employed for chemical protein synthesis relying on peptide thioester chemistry, this is less true for selenol-based catalysts whose development is in its infancy. In this study, we compared different selenols derived from the selenocysteamine scaffold for their capacity to promote thiol-thioester exchanges in water at mildly acidic pH and the production of peptide thioesters from bis(2-sulfanylethyl)amido (SEA) peptides. The usefulness of a selected selenol compound is illustrated by the total synthesis of a biologically active human chemotactic protein, which plays an important role in innate and adaptive immunity<br /
- …