2 research outputs found

    Levels of control of Chilo partellus stem borer in segregating tropical Bt maize populations in Kenya

    Get PDF
    In Kenya, stem borers destroy an estimated 400,000 metric tons, or 13.5%, of farmers' annual maize harvest costing about US$80 millions. Bacillus thuringiensis (Bt) maize controls stem borers without harming humans, livestock and the environment and was sown to 140m ha-1 globally in 2009. Two public Bt maize lines of cry1Ab::ubi gene (Event 216 and Event 223) were crossed with two non-Bt maize inbred lines, CML144 and CML159. The efficacy in the control of Chilo partellus stem borers in the parents, F1 and F2:3 successive generations were studied in a biosafety level 2 greenhouse. The Btgene effectively reduced stem borer damage with lower values for number of exit holes, tunneling length, proportion of stalk tunneled, number of larvae and number of pupae than the non Bt-maize and the check cultivars. The F1 generations values for all damage parameters studied were comparable to those for the Bt-maize inbred lines as expected. The F2:3 generations showed a spread of damage parameters from resistant to susceptible. These results suggest that the Cry1A(b) genes in the study was inherited following the Mendelian segregation.Key words: Bt maize, Chilo partellus, Bt -endotoxins, biosafety, greenhouse

    Control of Busseola fusca and Chilo partellus stem borers by Bacillus thuringiensis (Bt)-&#948-endotoxins from Cry1Ab gene Event MON810 in greenhouse containment trials

    Get PDF
    Previous testing of several public Bacillus thuringiensis (Bt)-maize events did not show control of the African stem borer (Busseola fusca Fuller), an important stem borer species, without which stewardship would be compromised by the possibility of rapid development of resistance to Bt deltaendotoxins. This study was carried out to test Bt-maize Event MON810 as an option to control all major stem borer species in Kenya. Two Bt-maize hybrids, DKC8073YG and DKC8053YG, both containing Bt Event MON810 of Cry1Ab gene were imported to carry out greenhouse containment trials. The hybrids together with the controls were grown in 10 replications upto the V6 and V8 stages. Infestations on whole plants were carried out at two stages of growth using 5 neonates of the spotted stem borer (Chilo partellus Swinhoe) and B. fusca. Bt-maize Event MON810 hybrids showed resistance to both stem borer species with low leaf damage scores and few surviving larvae recovered from the whole plant. The public Bt-maize Event 223 did not control B. fusca. Deploying Bt-maize Event MON810 may, therefore, be used to control the two species of stem borers. However, the efficacy of Bt-maize Event MON810 will, need to be evaluated under field environments.Key words: Bacillus thuringiensis (Bt) maize, cry1A (b) proteins, stem borers, transgenic
    corecore