60 research outputs found

    Frequency-Domain Model of Microfluidic Molecular Communication Channels with Graphene BioFET-based Receivers

    Full text link
    Molecular Communication (MC) is a bio-inspired communication paradigm utilizing molecules for information transfer. Research on this unconventional communication technique has recently started to transition from theoretical investigations to practical testbed implementations, primarily harnessing microfluidics and sensor technologies. Developing accurate models for input-output relationships on these platforms, which mirror real-world scenarios, is crucial for assessing modulation and detection techniques, devising optimized MC methods, and understanding the impact of physical parameters on performance. In this study, we consider a practical microfluidic MC system equipped with a graphene field effect transistor biosensor (bioFET)-based MC receiver as the model system, and develop an analytical end-to-end frequency-domain model. The model provides practical insights into the dispersion and distortion of received signals, thus potentially informing the design of new frequency-domain MC techniques, such as modulation and detection methods. The accuracy of the developed model is verified through particle-based spatial stochastic simulations of pulse transmission in microfluidic channels and ligand-receptor binding reactions on the receiver surface

    Modeling convection-diffusion-reaction systems for microfluidic molecular communications with surface-based receivers in Internet of Bio-Nano Things.

    Get PDF
    We consider a microfluidic molecular communication (MC) system, where the concentration-encoded molecular messages are transported via fluid flow-induced convection and diffusion, and detected by a surface-based MC receiver with ligand receptors placed at the bottom of the microfluidic channel. The overall system is a convection-diffusion-reaction system that can only be solved by numerical methods, e.g., finite element analysis (FEA). However, analytical models are key for the information and communication technology (ICT), as they enable an optimisation framework to develop advanced communication techniques, such as optimum detection methods and reliable transmission schemes. In this direction, we develop an analytical model to approximate the expected time course of bound receptor concentration, i.e., the received signal used to decode the transmitted messages. The model obviates the need for computationally expensive numerical methods by capturing the nonlinearities caused by laminar flow resulting in parabolic velocity profile, and finite number of ligand receptors leading to receiver saturation. The model also captures the effects of reactive surface depletion layer resulting from the mass transport limitations and moving reaction boundary originated from the passage of finite-duration molecular concentration pulse over the receiver surface. Based on the proposed model, we derive closed form analytical expressions that approximate the received pulse width, pulse delay and pulse amplitude, which can be used to optimize the system from an ICT perspective. We evaluate the accuracy of the proposed model by comparing model-based analytical results to the numerical results obtained by solving the exact system model with COMSOL Multiphysics

    Microfluidic Molecular Communication Transmitter Based on Hydrodynamic Gating

    Full text link
    Molecular Communications (MC) is a bio-inspired paradigm for transmitting information using chemical signals, which can enable novel applications at the junction of biotechnology, nanotechnology, and information and communication technologies. However, designing efficient and reliable MC systems poses significant challenges due to the complex nature of the physical channel and the limitations of the micro/nanoscale transmitter and receiver devices. In this paper, we propose a practical microfluidic transmitter architecture for MC based on hydrodynamic gating, a widely utilized technique for generating chemical waveforms in microfluidic channels with high spatiotemporal resolution. We develop an approximate analytical model that can capture the fundamental characteristics of the generated molecular pulses, such as pulse width, pulse amplitude, and pulse delay, as functions of main system parameters, such as flow velocity and gating duration. We validate the accuracy of our model by comparing it with finite element simulations using COMSOL Multiphysics under various system settings. Our analytical model can enable the optimization of microfluidic transmitters for MC applications in terms of minimizing intersymbol interference and maximizing data transmission rate

    Frequency-Domain Detection for Molecular Communication with Cross-Reactive Receptors

    Full text link
    Molecular Communications (MC) is a bio-inspired communication paradigm that uses molecules as information carriers, requiring unconventional transceivers and modulation/detection techniques. Practical MC receivers (MC-Rxs) can be implemented using field-effect transistor biosensor (bioFET) architectures, where surface receptors reversibly react with ligands. The time-varying concentration of ligand-bound receptors is translated into electrical signals via field effect, which is used to decode the transmitted information. However, ligand-receptor interactions do not provide an ideal molecular selectivity, as similar ligand types, i.e., interferers, co-existing in the MC channel, can interact with the same type of receptors. Overcoming this molecular cross-talk in the time domain can be challenging, especially when Rx has no knowledge of the interferer statistics or operates near saturation. Therefore, we propose a frequency-domain detection (FDD) technique for bioFET-based MC-Rxs that exploits the difference in binding reaction rates of different ligand types reflected in the power spectrum of the ligand-receptor binding noise. We derive the bit error probability (BEP) of the FDD technique and demonstrate its effectiveness in decoding transmitted concentration signals under stochastic molecular interference compared to a widely used time-domain detection (TDD) technique. We then verified the analytical performance bounds of the FDD through a particle-based spatial stochastic simulator simulating reactions on the MC-Rx in microfluidic channels.Comment: Submitted to the IEEE for possible publication. arXiv admin note: text overlap with arXiv:2301.0104

    D-DSC: Decoding Delay-based Distributed Source Coding for Internet of Sensing Things.

    Get PDF
    Spatial correlation between densely deployed sensor nodes in a wireless sensor network (WSN) can be exploited to reduce the power consumption through a proper source coding mechanism such as distributed source coding (DSC). In this paper, we propose the Decoding Delay-based Distributed Source Coding (D-DSC) to improve the energy efficiency of the classical DSC by employing the decoding delay concept which enables the use of the maximum correlated portion of sensor samples during the event estimation. In D-DSC, network is partitioned into clusters, where the clusterheads communicate their uncompressed samples carrying the side information, and the cluster members send their compressed samples. Sink performs joint decoding of the compressed and uncompressed samples and then reconstructs the event signal using the decoded sensor readings. Based on the observed degree of the correlation among sensor samples, the sink dynamically updates and broadcasts the varying compression rates back to the sensor nodes. Simulation results for the performance evaluation reveal that D-DSC can achieve reliable and energy-efficient event communication and estimation for practical signal detection/estimation applications having massive number of sensors towards the realization of Internet of Sensing Things (IoST)

    Channel Sensing in Molecular Communications with Single Type of Ligand Receptors

    Get PDF
    Molecular Communications (MC) uses molecules as information carriers between nanomachines. MC channel in practice can be crowded with different types of molecules, i.e., ligands, which can have similar binding properties causing severe cross-talk on ligand receptors. Simultaneous sensing of multiple ligand types provides opportunities for eliminating interference of external molecular sources and multi-user interference (MUI), and developing new multiple access techniques for MC nanonetworks. In this paper, we investigate channel sensing methods that use only a single type of receptors and exploit the amount of time receptors stay bound and unbound during ligand-receptor binding reaction to concurrently estimate the concentration of multiple types of ligands. We derive the Cram\'er-Rao Lower Bound (CRLB) for multi-ligand estimation, and propose practical and low-complexity suboptimal estimators for channel sensing. We analyze the performance of the proposed methods in terms of normalized mean squared error (NMSE), and show that they can efficiently estimate the concentration of ligands up to 1010 different types with an average NMSE far below 10βˆ’210^{-2}. Lastly, we propose a synthetic receptor design based on modified kinetic proofreading (KPR) scheme to sample the unbound and bound time durations, and a Chemical Reaction Network (CRN) to perform the required computations in synthetic cells.This work was supported in part by the ERC projects MINERVA (ERC-2013-CoG #616922), and MINERGRACE (ERC-2017- PoC #780645)
    • …
    corecore