48 research outputs found

    A recipe for high impact

    Get PDF
    What makes an article high impact

    Characterizing ABC-Transporter Substrate-Likeness Using a Clean-Slate Genetic Background

    Get PDF
    Mutations in ATP Binding Cassette (ABC)-transporter genes can have major effects on the bioavailability and toxicity of the drugs that are ABC-transporter substrates. Consequently, methods to predict if a drug is an ABC-transporter substrate are useful for drug development. Such methods traditionally relied on literature curated collections of ABC-transporter dependent membrane transfer assays. Here, we used a single large-scale dataset of 376 drugs with relative efficacy on an engineered yeast strain with all ABC-transporter genes deleted (ABC-16), to explore the relationship between a drug’s chemical structure and ABC-transporter substrate-likeness. We represented a drug’s chemical structure by an array of substructure keys and explored several machine learning methods to predict the drug’s efficacy in an ABC-16 yeast strain. Gradient-Boosted Random Forest models outperformed all other methods with an AUC of 0.723. We prospectively validated the model using new experimental data and found significant agreement with predictions. Our analysis expands the previously reported chemical substructures associated with ABC-transporter substrates and provides an alternative means to investigate ABC-transporter substrate-likeness

    Oxidative stress is a mediator for increased lipid accumulation in a newly isolated Dunaliella salina strain

    Get PDF
    Green algae offer sustainable, clean and eco-friendly energy resource. However, production efficiency needs to be improved. Increasing cellular lipid levels by nitrogen depletion is one of the most studied strategies. Despite this, the underlying physiological and biochemical mechanisms of this response have not been well defined. Algae species adapted to hypersaline conditions can be cultivated in salty waters which are not useful for agriculture or consumption. Due to their inherent extreme cultivation conditions, use of hypersaline algae species is better suited for avoiding culture contamination issues. In this study, we identified a new halophilic Dunaliella salina strain by using 18S ribosomal RNA gene sequencing. We found that growth and biomass productivities of this strain were directly related to nitrogen levels, as the highest biomass concentration under 0.05 mM or 5 mM nitrogen regimes were 495 mg/l and 1409 mg/l, respectively. We also confirmed that nitrogen limitation increased cellular lipid content up to 35% under 0.05 mM nitrogen concentration. In order to gain insight into the mechanisms of this phenomenon, we applied fluorometric, flow cytometric and spectrophotometric methods to measure oxidative stress and enzymatic defence mechanisms. Under nitrogen depleted cultivation conditions, we observed increased lipid peroxidation by measuring an important oxidative stress marker, malondialdehyde and enhanced activation of catalase, ascorbate peroxidase and superoxide dismutase antioxidant enzymes. These observations indicated that oxidative stress is accompanied by increased lipid content in the green alga. In addition, we also showed that at optimum cultivation conditions, inducing oxidative stress by application of exogenous H2O2 leads to increased cellular lipid content up to 44% when compared with non-treated control groups. Our results support that oxidative stress and lipid overproduction are linked. Importantly, these results also suggest that oxidative stress mediates lipid accumulation. Understanding such relationships may provide guidance for efficient production of algal biodiesels

    Strength of selection pressure is an important parameter contributing to the complexity of antibiotic resistance evolution

    Get PDF
    Revealing the genetic changes responsible for antibiotic resistance can be critical for developing novel antibiotic therapies. However, systematic studies correlating genotype to phenotype in the context of antibiotic resistance have been missing. In order to fill in this gap, we evolved 88 isogenic Escherichia coli populations against 22 antibiotics for 3 weeks. For every drug, two populations were evolved under strong selection and two populations were evolved under mild selection. By quantifying evolved populations' resistances against all 22 drugs, we constructed two separate cross-resistance networks for strongly and mildly selected populations. Subsequently, we sequenced representative colonies isolated from evolved populations for revealing the genetic basis for novel phenotypes. Bacterial populations that evolved resistance against antibiotics under strong selection acquired high levels of cross-resistance against several antibiotics, whereas other bacterial populations evolved under milder selection acquired relatively weaker cross-resistance. In addition, we found that strongly selected strains against aminoglycosides became more susceptible to five other drug classes compared with their wild-type ancestor as a result of a point mutation on TrkH, an ion transporter protein. Our findings suggest that selection strength is an important parameter contributing to the complexity of antibiotic resistance problem and use of high doses of antibiotics to clear infections has the potential to promote increase of cross-resistance in clinics

    GEN-KAS-OXO-a.xlsx

    No full text
    erwini

    A drug similarity network for understanding drug mechanism of action

    No full text
    Chemogenomic experiments, where genetic and chemical perturbations are combined, provide data for discovering the relationships between genotype and phenotype. Traditionally, analysis of chemogenomic datasets has been done considering the sensitivity of the deletion strains to chemicals, and this has shed light on drug mechanism of action and detecting drug targets. Here, we computationally analyzed a large chemogenomic dataset, which combines more than 300 chemicals with virtually all gene deletion strains in the yeast S. cerevisiae. In addition to sensitivity relation between deletion strains and chemicals, we also considered the deletion strains that are resistant to chemicals. We found a small set of genes whose deletion makes the cell resistant to many chemicals. Curiously, these genes were enriched for functions related to RNA metabolism. Our approach allowed us to generate a network of drugs and genes that are connected with resistance or sensitivity relationships. As a quality assessment, we showed that the higher order motifs found in this network are consistent with biological expectations. Finally, we constructed a biologically relevant network projection pertaining to drug similarities, and analyzed this network projection in detail. We propose this drug similarity network as a useful tool for understanding drug mechanism of action

    Selectivity model data

    No full text
    (i) Raw cell growth measurements for drug interaction assays of 76 pairwise combinations in C. albicans and 8 pairwise combinations in S. cerevisiae. Each file contains a 64 column matrix of numbers, which corresponds to OD595 readings for one drug‐drug interaction. Rows correspond to different time points with 15 minutes intervals. Columns correspond to the 8 x 8 matrix of drug concentration combinations. (ii) dose-response measurements for 12 drugs in C. albicans and S. cerevisiae
    corecore