52 research outputs found

    Maximizing the Impact of Microphysiological Systems with in Vitro–in Vivo Translation

    Get PDF
    Microphysiological systems (MPS) hold promise for improving therapeutic drug approval rates by providing more physiological, human-based, in vitro assays for preclinical drug development activities compared to traditional in vitro and animal models. Here, we first summarize why MPSs are needed in pharmaceutical development, and examine how MPS technologies can be utilized to improve preclinical efforts. We then provide the perspective that the full impact of MPS technologies will be realized only when robust approaches for in vitro-in vivo (MPS-to-human) translation are developed and utilized, and explain how the burgeoning field of quantitative systems pharmacology (QSP) can fill that need

    Physiome-on-a-Chip: The Challenge of “Scaling” in Design, Operation, and Translation of Microphysiological Systems

    Get PDF
    Scaling of a microphysiological system (MPS) or physiome-on-a-chip is arguably two interrelated, modeling-based activities: on-platform scaling and in vitro-in vivo translation. This dual approach reduces the need to perfectly rescale and mimic in vivo physiology, an aspiration that is both extremely challenging and not substantively meaningful because of uncertain relevance of any specific physiological condition. Accordingly, this perspective offers a tractable approach for designing interacting MPSs and relating in vitro results to analogous context in vivo.United States. Defense Advanced Research Projects Agency. Microphysiological Systems Program (Grant W911NF-12-2-0039)National Institutes of Health (U.S.) Microphysiological Systems Program (Grant 4-UH3-TR000496-03)United States. Army Research Office (Institute for Collaborative Biotechnologies. Grant W911NF-09- 0001

    PI3K-dependent cross-talk interactions converge with Ras as quantifiable inputs integrated by Erk

    Get PDF
    Although it is appreciated that canonical signal-transduction pathways represent dominant modes of regulation embedded in larger interaction networks, relatively little has been done to quantify pathway cross-talk in such networks. Through quantitative measurements that systematically canvas an array of stimulation and molecular perturbation conditions, together with computational modeling and analysis, we have elucidated cross-talk mechanisms in the platelet-derived growth factor (PDGF) receptor signaling network, in which phosphoinositide 3-kinase (PI3K) and Ras/extracellular signal-regulated kinase (Erk) pathways are prominently activated. We show that, while PI3K signaling is insulated from cross-talk, PI3K enhances Erk activation at points both upstream and downstream of Ras. The magnitudes of these effects depend strongly on the stimulation conditions, subject to saturation effects in the respective pathways and negative feedback loops. Motivated by those dynamics, a kinetic model of the network was formulated and used to precisely quantify the relative contributions of PI3K-dependent and -independent modes of Ras/Erk activation

    Integrated Gut and Liver Microphysiological Systems for Quantitative In Vitro Pharmacokinetic Studies

    Get PDF
    Investigation of the pharmacokinetics (PK) of a compound is of significant importance during the early stages of drug development, and therefore several in vitro systems are routinely employed for this purpose. However, the need for more physiologically realistic in vitro models has recently fueled the emerging field of tissue-engineered 3D cultures, also referred to as organs-on-chips, or microphysiological systems (MPSs). We have developed a novel fluidic platform that interconnects multiple MPSs, allowing PK studies in multi-organ in vitro systems along with the collection of high-content quantitative data. This platform was employed here to integrate a gut and a liver MPS together in continuous communication, and investigate simultaneously different PK processes taking place after oral drug administration in humans (e.g., intestinal permeability, hepatic metabolism). Measurement of tissue-specific phenotypic metrics indicated that gut and liver MPSs can be fluidically coupled with circulating common medium without compromising their functionality. The PK of diclofenac and hydrocortisone was investigated under different experimental perturbations, and results illustrate the robustness of this integrated system for quantitative PK studies. Mechanistic model-based analysis of the obtained data allowed the derivation of the intrinsic parameters (e.g., permeability, metabolic clearance) associated with the PK processes taking place in each MPS. Although these processes were not substantially affected by the gut-liver interaction, our results indicate that inter-MPS communication can have a modulating effect (hepatic metabolism upregulation). We envision that our integrative approach, which combines multi-cellular tissue models, multi-MPS platforms, and quantitative mechanistic modeling, will have broad applicability in pre-clinical drug development.United States. Defense Advanced Research Projects Agency (Grant W911NF-12-2- 0039)National Institutes of Health (U.S.) (Grant 4-UH3-TR000496-0

    Integration of systems biology with organs-on-chips to humanize therapeutic development

    Get PDF
    "Mice are not little people" - a refrain becoming louder as the gaps between animal models and human disease become more apparent. At the same time, three emerging approaches are headed toward integration: powerful systems biology analysis of cell-cell and intracellular signaling networks in patient-derived samples; 3D tissue engineered models of human organ systems, often made from stem cells; and micro-fluidic and meso-fluidic devices that enable living systems to be sustained, perturbed and analyzed for weeks in culture. Integration of these rapidly moving fields has the potential to revolutionize development of therapeutics for complex, chronic diseases, including those that have weak genetic bases and substantial contributions from gene-environment interactions. Technical challenges in modeling complex diseases with "organs on chips" approaches include the need for relatively large tissue masses and organ-organ cross talk to capture systemic effects, such that current microfluidic formats often fail to capture the required scale and complexity for interconnected systems. These constraints drive development of new strategies for designing in vitro models, including perfusing organ models, as well as "mesofluidic" pumping and circulation in platforms connecting several organ systems, to achieve the appropriate physiological relevance. Keywords: organs-on-chips; 3D liver culture; perfusion; drug development; inflammation; organ crosstalk; tissue chip; intestineUnited States. Defense Advanced Research Projects Agency (Award W911NF-12-2- 0039))National Institutes of Health (U.S.) (Grant UH3TR000496

    Quantitative Systems Pharmacology Approaches Applied to Microphysiological Systems (MPS): Data Interpretation and Multi-MPS Integration

    Get PDF
    Our goal in developing Microphysiological Systems (MPS) technology is to provide an improved approach for more predictive preclinical drug discovery via a highly integrated experimental/computational paradigm. Success will require quantitative characterization of MPSs and mechanistic analysis of experimental findings sufficient to translate resulting insights from in vitro to in vivo. We describe herein a systems pharmacology approach to MPS development and utilization that incorporates more mechanistic detail than traditional pharmacokinetic/pharmacodynamic (PK/PD) models. A series of studies illustrates diverse facets of our approach. First, we demonstrate two case studies: a PK data analysis and an inflammation response––focused on a single MPS, the liver/immune MPS. Building on the single MPS modeling, a theoretical investigation of a four-MPS interactome then provides a quantitative way to consider several pharmacological concepts such as absorption, distribution, metabolism, and excretion in the design of multi-MPS interactome operation and experiments.United States. Defense Advanced Research Projects Agency. Microphysiological Systems Program (W911NF-12-2-0039)National Institutes of Health (U.S.) Microphysiological Systems Program (4-UH3-TR000496-03)Massachusetts Institute of Technology. Center for Environmental Health Sciences (NIEHS Grant P30-ES002109

    Interconnected Microphysiological Systems for Quantitative Biology and Pharmacology Studies

    Get PDF
    Microphysiological systems (MPSs) are in vitro models that capture facets of in vivo organ function through use of specialized culture microenvironments, including 3D matrices and microperfusion. Here, we report an approach to co-culture multiple different MPSs linked together physiologically on re-useable, open-system microfluidic platforms that are compatible with the quantitative study of a range of compounds, including lipophilic drugs. We describe three different platform designs - "4-way", "7-way", and "10-way" - each accommodating a mixing chamber and up to 4, 7, or 10 MPSs. Platforms accommodate multiple different MPS flow configurations, each with internal re-circulation to enhance molecular exchange, and feature on-board pneumatically-driven pumps with independently programmable flow rates to provide precise control over both intra- and inter-MPS flow partitioning and drug distribution. We first developed a 4-MPS system, showing accurate prediction of secreted liver protein distribution and 2-week maintenance of phenotypic markers. We then developed 7-MPS and 10-MPS platforms, demonstrating reliable, robust operation and maintenance of MPS phenotypic function for 3 weeks (7-way) and 4 weeks (10-way) of continuous interaction, as well as PK analysis of diclofenac metabolism. This study illustrates several generalizable design and operational principles for implementing multi-MPS "physiome-on-a-chip" approaches in drug discovery.United States. Army Research Office (Grant W911NF-12-2-0039

    Biology-inspired microphysiological system approaches to solve the prediction dilemma of substance testing

    No full text
    The recent advent of microphysiological systems-microfluidic biomimetic devices that aspire to emulate the biology of human tissues, organs and circulation in vitro-promises to enable a global paradigm shift in drug development. An extraordinary US government initiative and various dedicated research programs in Europe and Asia recently have led to the first cutting-edge achievements of human single-organ and multi-organ engineering based on microphysiological systems. The expectation is that test systems established on this basis will model various disease stages and predict toxicity, immunogenicity, ADME profiles and treatment efficacy prior to clinical testing. Consequently, this technology could significantly affect the way drug substances are developed in the future. Furthermore, microphysiological system-based assays may revolutionize our current global programs of prioritization of hazard characterization for any new substances to be used, for example, in agriculture, food, ecosystems or cosmetics, thus replacing the use of laboratory animal models. Here, thirty-six experts from academia, industry and regulatory bodies present the results of an intensive workshop (held in June 2015, Berlin, Germany). They review the status quo of microphysiological systems available today against industry needs, and assess the broad variety of approaches with fit-for-purpose potential in the drug development cycle. Feasible technical solutions to reach the next levels of human biology in vitro are proposed. Furthermore, key organ-on-a-chip case studies as well as various national and international programs are highlighted. Finally, a roadmap into the future towards more predictive and regulatory-accepted substance testing on a global scale is outlined. Keywords: microphysiological systems, organ-on-a-chip, in vitro models, predictive toxicology, drug testin
    • …
    corecore