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Abstract. Investigation of the pharmacokinetics (PK) of a compound is of significant
importance during the early stages of drug development, and therefore several in vitro
systems are routinely employed for this purpose. However, the need for more physiologically
realistic in vitro models has recently fueled the emerging field of tissue-engineered 3D
cultures, also referred to as organs-on-chips, or microphysiological systems (MPSs). We have
developed a novel fluidic platform that interconnects multiple MPSs, allowing PK studies in
multi-organ in vitro systems along with the collection of high-content quantitative data. This
platform was employed here to integrate a gut and a liver MPS together in continuous
communication, and investigate simultaneously different PK processes taking place after oral
drug administration in humans (e.g., intestinal permeability, hepatic metabolism). Measure-
ment of tissue-specific phenotypic metrics indicated that gut and liver MPSs can be fluidically
coupled with circulating common medium without compromising their functionality. The PK
of diclofenac and hydrocortisone was investigated under different experimental perturba-
tions, and results illustrate the robustness of this integrated system for quantitative PK
studies. Mechanistic model-based analysis of the obtained data allowed the derivation of the
intrinsic parameters (e.g., permeability, metabolic clearance) associated with the PK
processes taking place in each MPS. Although these processes were not substantially
affected by the gut-liver interaction, our results indicate that inter-MPS communication can
have a modulating effect (hepatic metabolism upregulation). We envision that our integrative
approach, which combines multi-cellular tissue models, multi-MPS platforms, and quantita-
tive mechanistic modeling, will have broad applicability in pre-clinical drug development.

KEY WORDS: drug development; gut-liver integration; microphysiological systems; organs-on-chips;

pharmacokinetics.

INTRODUCTION

Investigation of the pharmacokinetic (PK) properties of
a drug is particularly important during pre-clinical drug
development, as it facilitates decision-making regarding the
dosage regimen in early-phase clinical studies. Animal species
are often used to study the PK of a compound under
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development; however, such studies are costly, can be
considered unethical, and most importantly they often fail to
accurately capture the human phenotype. For these reasons,
several in vitro systems have been also developed and are
routinely employed to investigate the absorption, distribution,
metabolism, and excretion (ADME) of a compound (1).
Although these systems have been extremely valuable in drug
development, they are not without limitations and the need
for more physiologically realistic and better predictive in vitro
models is widely recognized.

The emerging field of microphysiological systems
(MPSs), also known as organs-on-chips (OOC), holds prom-
ise for a transformative change in pre-clinical drug develop-
ment (2-4). The term MPSs encompasses a range of
compositionally complex (i.e., more than one cell type) and
3D cell cultures that are dynamically perfused, thus capturing
more features of human organ or tissue function compared to
the traditional static 2D cell cultures (3-8). In addition, the
use of micro-machined biomimetic reactor platforms allows
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in vitro re-creation of the mechanical, fluidic, spatial, and
chemical stimuli and cues that a tissue is exposed to in vivo
(9). To better recapitulate human physiology at a systemic
level and establish better pharmacologic pre-clinical models
that translate more accurately to human outcomes, multi-
MPS platforms have been developed to interconnect several
MPSs representing facets of different organs together and
thus allow organ-organ interaction and cross-signaling (10—
18). It is important to highlight that neither single- nor multi-
MPS technologies are aiming to reproduce an entire organ or
the entire human body, respectively, but rather to mimic
specific organ functions, microarchitecture, and organ-organ
crosstalk relevant to the biological question of interest.

This emerging field has the potential to offer novel
cutting-edge in vitro systems to explore the PK properties of a
drug pre-clinically. For such investigations, the integration of
gut and liver MPSs is crucial as these two organs play a
central role on the bio-distribution and bioavailability of an
orally administrated compound (through processes such as
intestinal permeability and hepatic metabolism). Over the last
years, significant progress has been made towards the
development of such integrated gut-liver fluidic platforms
(7,12,14,19-23). However, all these technologies published to
date have at least one of the following limitations with respect
to their application for PK investigations: (1) they employ
materials (e.g., PDMS) that non-specifically adsorb lipophilic
compounds; (2) they use relatively low culture volumes and
cell numbers that can negatively affect the output biological
signal and the collection of high-content measurements; (3)
they do not allow continuous access to the MPS compart-
ments for direct and frequent sampling of circulating drugs/
metabolites and thus data-rich quantitative PK profiles across
all platform compartments cannot always be obtained; and
(4) they are usually not coupled with a mathematical
modeling methodology to disentangle the biology-related
parameters (e.g., intestinal permeability, intrinsic hepatic
clearance) from system-specific processes and parameters
(e.g., flow rates, surface areas), a step particularly crucial for
the subsequent in vitro to in vivo translation.

In this work, we used a novel mesofluidic multi-MPS
platform coupled with computational modeling to address
these limitations. Specifically, this platform was used to
interconnect a gut MPS with a well-characterized liver MPS
that has repeatedly demonstrated its value for PK-related
investigations (hepatic clearance determination (6,24), assess-
ment of population variability in drug metabolism (24),
effects of inflammation on drug metabolism (25), and drug-
drug interactions (26)). The overall objective of this work is
to introduce and illustrate the applicability of this novel multi-
MPS technology for quantitative PK investigations, and also
provide the necessary methodological foundation for its
robust use in the future.

To do that, we first practically illustrate the operation of
this integrated gut-liver system to explore the PK properties
of drugs in vitro. Specifically, the kinetics of two compounds,
diclofenac (DCF) and hydrocortisone (HC), were studied by
collecting serial concentration-time measurements across the
different compartments of the employed multi-MPS platform.
Secondly, we investigated the effects of the interaction/
crosstalk between the gut and liver MPSs on the on-
platform PK-related processes (e.g., permeability through
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the epithelial barrier of the gut MPS, intrinsic metabolic
clearance of the liver MPS) and other MPS functionality
metrics (e.g., transepithelial electrical resistance (TEER)
levels, albumin production). To do so, kinetic experiments
were performed under several experimental perturbations
(only the liver MPS on-platform, only the gut MPS on-
platform, both the gut and liver MPSs on-platform). Finally,
we employed mechanistic modeling demonstrating the value
of this computational approach for the analysis of the
experimental data obtained from such a complex in vitro
system. All the above are critical to enable the future use of
these systems to predict the PK properties of a compound
before proceeding to clinical studies in humans.

METHODS

Multi-MPS Platform Description

The multi-MPS platform employed in this work (see
Fig. 1, Table I) is similar in size to a regular multi-well plate
and has been developed with the aim to allow quantitative
pharmacology studies in interconnected MPSs of up to four
different organs. The top plate (fluidic plate) of this micro-
machined platform is constructed from polysulfone plastic,
taking advantage of its superior properties in terms of
minimal drug adsorption. The platform incorporates five
distinct compartments to accommodate a transwell-style gut
MPS, a 3D-perfused liver MPS, two additional transwell-style
MPSs of organs of interest, and a mixing chamber (mixer)
that aims to represent the systemic circulation compartment
(equivalent to blood in the human body). The different
platform compartments are interconnected with microfluidic
channels and peristaltic micropumps that are fabricated on
the bottom of the fluidic plate. The respective flow rates can
be dynamically controlled through a graphical user interface,
with pumps being remotely actuated through pneumatic
tubing attached to the bottom plate (pneumatic manifold
plate). Programmable control of pump rate and direction
allows easy reconfiguration of the hardware to accommodate
various experimental designs and applications.

In the current work, the two platform compartments that
can house MPSs of additional organs were dynamically
excluded (see Fig. 1) to allow the performance of PK studies
in a dedicated gut-liver interaction system. The MPS inter-
connection scheme on-platform and the specification of the
associated flow partitioning aimed to mirror as close as
possible the organ physiology and flow partition in humans
(27). Therefore, the gut and the liver MPS compartments
were connected in series and the total output from the mixing
chamber (systemic flow rate) was partitioned as 75 and 25%
towards the gut and liver MPS compartments, respectively
(see Fig. 1b). Consequently, the gut MPS receives its entire
input flow directly from the mixing chamber; and the liver
MPS receives 1/4 of its input flow directly from the mixing
chamber (mimicking the hepatic artery blood flow) and the
remaining 3/4 from the outflow of the gut MPS compartment
(mimicking the portal vein blood flow). The systemic flow
rate (Qsys) Was set to 15 mL/day, based upon a computational
model-guided approach (28) that indicated that this flow rate
would be adequate to achieve distribution equilibrium
conditions across the different MPS compartments and the
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Fig. 1. Design and operation of the platform employed for gut and liver MPS integration. a Exploded view of the
multi-MPS platform. The fluidic plate (in yellow), constructed from polysulfone plastic, contains distinct
compartments to accommodate different MPSs. These compartments are interconnected with the aid of microfluidic
channels and pumps that are fabricated on the bottom of this plate and allow circulation of culture medium. The
pneumatic plate (clear acrylic) distributes compressed air and vacuum to small ports below each pump/valve
chamber. A pumping membrane, made of translucent polyurethane, is clamped between the fluidic and the
pneumatic plate in order to provide a sterile barrier and serve as the actuation layer of the pumps and valves. All
the platform layers are fastened together with stainless steel screws and spring washers to form a single unit that can
be treated as a traditional well plate. A cross-section of the multi-MPS platform (shown on the right) illustrates the
topology of the gut MPS, liver MPS, and mixing chamber (mixer) compartments and the fact that these
compartments can hold circulating medium. The two platform compartments that can house additional organ MPS
(marked with “x”) were dynamically excluded through configuration of the respective flow rates in order to conduct
PK studies in a dedicated gut-liver interaction system. b Schematic diagram illustrating the platform’s medium
circulation flow pattern used in the current work. The systemic flow rate (Qsys;) represents the total output from the
mixing chamber and was partitioned as 75 and 25% towards the gut and the liver MPS compartments, respectively. ¢
Schematic diagram of the perfused gut MPS on-platform. d Schematic diagram of the perfused liver MPS on-
platform

mixing chamber in the time frame of the performed PK
studies. Along with inter-MPS flows, each compartment
employed self-circulation (1 pL/s for the mixing chamber
and liver MPS compartments and 0.25 pL/s for the basal gut
MPS compartment) to allow well-stirred conditions and
efficient provision of oxygen and nutrients to the micro-
tissues in each MPS compartment (Fig. 1c, d).

A particular advantage of this multi-MPS platform for
PK-related studies is the flexibility it offers with regard to
drug dosing (route of administration). Specifically, a com-
pound can be administered to the apical side of the gut MPS
(mimicking oral administration) to be absorbed and

consequently distributed firstly to the liver MPS compartment
(as in the human body) and then to the mixing chamber.
Alternatively, it can be administered directly into the mixing
chamber (mimicking an IV administration). To illustrate this
dosing flexibility and the way that the platform operates
under these different modes of drug administration, time-
lapse videos of dye distribution were generated for each
mode and can be found in the Online Supplement. For these
dye distribution experiments, the platform’s flow configura-
tion was set as described in the earlier paragraph, phosphate-
buffered saline (PBS) with 1% bovine serum albumin (BSA)
was added to each platform compartment at nominal volumes



Table I. DCF Mechanistic PK Model Parameters Across the
Different Experimental Arms

Gut only Liver only Gut/liver

Fixed

QOsyst (mL/day) 15 15 15

Vea) (mL) 0.5 - 0.5

Vi (mL) 1.4 14 1.4

Ve (mL) 1 1 1

fup, 0.13 0.13 0.13

SA (cm?) 1.12 - 1.12
Estimated”

P (x 107 cm/s) 15.94 (0.58) - 14.72 (0.83)

CLint, (pL/min) 0.25 (0.02) - 0.29 (0.05)

CLint; (nL/min) - 8.99 (0.20) 10.18 (0.46)

DCF diclofenac, Qy,, systemic flow rate during platform operation,
Ve(a) volume of the gut apical compartment, V) volume of the gut
basolateral compartment, V; volume of the liver compartment, V.
volume of the mixing chamber compartment, fu,, DCF fraction
unbound in circulating common medium (value extracted from (24)),
SA surface area of the gut MPS epithelial barrier, P DCF
permeability coefficient across the epithelial barrier of the gut MPS,
CLint, intrinsic metabolic DCF clearance of the gut MPS, CLint,
intrinsic metabolic DCF clearance of the liver MPS

“For the estimated parameters, reported values refer to the mean of
the posterior distribution followed by the respective standard
deviation in parenthesis

(see the “Liver and Gut MPS Description” section), and at
t =0, 100 uL of 4 mM Fast Green FCF (FDA-approved food
dye) in water was added to either the gut MPS apical
compartment or the mixing chamber. Each video frame
represents 24 s, such that 1 min of video spans 12 h. The
reader is also referred to the Supplementary Material for
extensive details regarding the cleaning, assembly, and
preparation of the multi-MPS platforms.

Liver and Gut MPS Description

The liver MPS employed in this work is a functionally
equivalent version of the liver micro-bioreactor previously
described by Domansky et al. (29), with the oxygenation
conduit folded around the reactor well to reduce the physical
footprint. This bioreactor has been previously utilized in a
number of drug-related studies (6,24-26). Briefly, the reactor
houses a scaffold in the form of a thin (0.25 mm) polystyrene
disc permeated with an array of 301 channels (0.3-mm
diameter each) that is seated in the flow path on a
microporous membrane. Hepatocytes are seeded into the
scaffold, where they attach and form 3D structures. In this
work, the liver MPS consisted of a 3D co-culture of human
primary cryopreserved hepatocytes and Kupffer cells at a 10:1
ratio (600,000 hepatocytes:60,000 Kupffer cells), with the aim
to recapitulate metabolic and immune function. The cells of
the liver MPS were seeded on-platform 3 days prior to the
start of the PK experiments to allow for micro-tissue
formation and recovery from any seeding-related stress
responses. The liver MPS preparation protocol is extensively
described in the Supplementary Material and in prior
publications (25,26).
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The gut MPS consisted of Caco2-BBe epithelial cells and
mucin-producing goblet cells (HT29-MTX) at a 9:1 ratio, plus
an immune component consisting of primary monocyte-
derived dendritic cells at a 10:1 ratio (1,000,000 epithelial
cells at monolayer maturation:100,000 dendritic cells). The
gut MPS was seeded in a standard 12-well transwell and
matured for 3 weeks off-platform (static) prior to its
integration in the multi-MPS platform at the start of the PK
experiments (see Supplementary Material for all the details
regarding the gut MPS preparation). Both gut and liver MPSs
include an immune component with the scope to enable
various biological and pharmacological future applications.
The investigation of the role and contribution of the immune
component to the function of these MPSs is outside the scope
of the current paper as it has been extensively described
previously (25,26,30,31).

For all the on-platform PK experiments, a serum-free
common medium was circulating between the mixing
chamber, the liver MPS compartment, and the basolateral
side of the gut MPS compartment (Fig. 1). This common
medium contained 500 mL Williams E medium, 20 mL
Gibco Cocktail B, 80 nM HC, and 1% penicillin/
streptomycin (P/S). The apical side of the gut MPS
compartment was provided with serum-free apical medium
that contained phenol red-free DMEM with 1x ITS, 1x
NEAA, 1x GlutaMax, and 1% P/S. The mixing chamber
and the liver MPS compartments hold nominal medium
volumes of 1 and 1.4 mL, respectively. The apical and
basolateral sides of the gut MPS compartments hold media
volumes of 0.5 and 1.5 mL, respectively, while the surface
area of the gut MPS epithelial monolayer was 1.12 cm?
(surface area of the gut MPS transwell). For both MPSs,
tissue culture functionality was assessed by measurement of
associated phenotypic metrics, specifically, albumin
production for the liver MPS, TEER, and mucin
production for the gut MPS (see Supplementary Material
for extensive details on the methods for the quantification
of these metrics).

Design and Execution of the PK Studies in the Multi-MPS
Platform

To investigate the effect of organ-organ interaction/
crosstalk on the PK processes taking place in the multi-MPS
platform, the current study involved three experimental
arms, each involving four replicate platforms (n = 4). In the
first arm, referred to as “gut only” in this manuscript, only
the gut MPS was present on-platform and no tissue was
present in the liver compartment. In the second arm,
referred to as “liver only,” only the liver MPS was present
on-platform and no tissue was present in the gut compart-
ment. Finally, in the last arm, referred to as “gut/liver,” both
the gut and the liver MPSs were present on-platform.

For the arms that included the gut MPS on-platform
(gut only, gut/liver), DCF powder was dissolved in the gut
apical medium, filter-sterilized, and administered to the
apical compartment of the gut MPS (mimicking an oral
administration). For the liver only arm, DCF powder was
dissolved in the common medium, filter-sterilized, and
administered to the mixing chamber compartment (mimick-
ing an IV administration). The same DCF concentration
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(40 pM) was administered in the dosed compartments
across all experimental arms. Model-based simulations,
utilizing prior knowledge from in-house single-MPS DCF
experiments, indicated that such a DCF dose on-platform
will likely result in mixing chamber maximum concentra-
tions (Chax) that are in the range of the clinically observed
DCF Cpax in plasma following standard therapeutic dosing
(32).

Corticosteroids, either HC or dexamethasone, are almost
always included in liver cell culture media because their
presence regulates CYP450 activity and other differentiated
functions. As in the current work HC was a component of the
circulating common medium (see the previous section), HC
kinetics were examined on-platform simultaneously to the
DCF kinetics. Every platform compartment in which a
common medium was added at the beginning (¢t = 0) of the
kinetic experiments (basolateral compartment of the gut
MPS, liver MPS compartment, and mixing chamber compart-
ment) was treated as receiving a HC dose.

For all experimental arms, media samples (75 pL) were
taken from the different platform compartments at
predetermined sampling times (see the “Results” section).
At the end of the PK experiments (72-h post-dose), the liver
micro-tissue was removed from the platform, snap-frozen,
and lysed in 500 pL of 100% methanol for intracellular drug
quantification (see Supplementary Material for further
details). All the obtained media and lysate samples were
analyzed for the quantification of DCF, 4-hydroxy-diclofenac
(4-OH-DCF), and HC using a 3-in-1 LC-MS/MS method (see
Supplementary Material for details).

Off-Platform PK Studies in Single MPS Technologies

In parallel to the PK studies performed in this multi-
MPS platform (on-platform), kinetic studies were also
performed in single MPS technologies off-platform to assess
whether the hardware/operational-related differences have
substantial impact on the underlying PK-related processes.
Firstly, DCF and HC kinetics were investigated off-platform
in a static gut MPS. This static gut MPS is exactly equivalent
to on-platform gut MPS as described earlier (e.g., the same
cell types/numbers/ratio, seeding, maturation, medium com-
ponents, volumes) but is not incorporated into a fluidic
device and thus lacks basolateral medium recirculation.
Secondly, HC kinetics were investigated off-platform in a
liver MPS device, the LiverChip™ (6,25,26), while the
kinetics of DCF in the LiverChip™ have been previously
reported (24). The liver MPS housed in the LiverChip™
device was identical to the liver MPS in our multi-MPS
platform (e.g., the same cell types/numbers/ratio, seeding,
medium components), except that in the multi-MPS plat-
form, the oxygenation conduit is folded around the reactor.
Similarly to the on-platform experiments, media samples
were taken during the off-platform kinetic experiments at
predetermined sampling times (see Supplementary
Figures S3-S5) and subsequently analyzed for drug quanti-
fication with an LC-MS/MS method (see Supplementary
Material). Cell culture health and function were assessed by
measurement of associated metrics, more specifically, albu-
min production in the LiverChip™, TEER, and mucin
production in the static gut MPS.

Model-Based Analysis of the Experimental PK Data

The experimentally observed DCF and HC kinetic data
on-platform were analyzed with the aid of mechanistic PK
models (see the “Results” section), the structure of which was
guided by the MPS interconnection scheme and the physio-
logical processes taking place on-platform. The developed
mechanistic models were fitted to the experimental data
(across all platform compartments) to estimate the model
parameters that represent the PK processes of interest (e.g.,
intrinsic metabolic clearance of the gut and liver MPS,
permeability across the epithelial barrier of the gut MPS). A
similar approach was used for the analysis of the experimen-
tal data obtained off-platform in single MPS technologies
(static gut, LiverChip™).

Model-based analysis was performed in NONMEM 7.3
(ICON Development Solutions, Ellicott City, MD) and the
Markov-Chain Monte Carlo (MCMC) Bayesian estimation
algorithm (BAYES) was used for parameter estimation. The
mass balance differential equations were evaluated with an
LSODA differential equation solver that can handle a mixed
system of both stiff and non-stiff differential equations
(ADVANI13). Additional investigations of the modeling
output and graphical analyses were performed in Matlab
R2015b (The MathWorks Inc., Natick, MA).

The parameters upon estimation were log-transformed
(the natural log of the parameters was estimated) to allow
sampling of the log-parameters from the multivariate normal
distribution that has been assigned for the priors. In order to
provide completely uninformative priors for the estimated
parameters, the variance of the normal prior was set to the
value of 10,000. Inter-platform variability of the estimated
parameters was treated to be negligible and the residual
(unexplained) variability in the observed data was modeled
with an additive error model on the domain of the log-
transformed data. Three separate MCMC chains were run
simultaneously with dispersed initial estimates and 550,000
iterations were requested for each chain (the first 50,000 were
treated as “burn-in phase” and were discarded). MCMC
convergence was investigated by visual inspection of the
MCMC chain histories (trace plots) to assess mixing and by
the calculation of the Gelman-Rubin diagnostic (33) (poten-
tial scale reduction factor metric) using the “CODA” package
in R (34). If this calculated metric had a value close to 1
(<1.1), the within- and between-chains variability can be
considered identical and it was assumed that convergence has
been achieved (35). The samples from the “stationary phase”
(500,000) of the three different chains were pooled to
summarize the posterior distribution of the estimated param-
eters and the posterior marginal probability densities were
obtained by fitting a kernel density function to the posterior
histogram.

RESULTS

Assessment of Gut and Liver MPS Functionality

Specific phenotypic markers were measured at the end of
the kinetic experiments (3 days post drug administration) to
assess cell culture functionality for the gut and the liver MPSs
on-platform (Fig. 2). It was evident that TEER (indicating the



integrity of the gut MPS epithelial barrier) and mucin
production (indicating functionality of the HT29-MTX cells
in the gut MPS) were comparable in the gut only and gut/liver
arms (Fig. 2a, b). Similarly, albumin production (indicating
hepatocyte functionality) was comparable between the liver
only and gut/liver arms (Fig. 2c). These results indicate that
the gut-liver crosstalk in the multi-MPS platform does not
affect the functionality metrics monitored in this work for
either the gut or the liver MPS. Additional data regarding
these phenotypic markers either on-platform before drug
administration, or off-platform in single MPS technologies
(static gut and LiverChip™) are provided in Supplementary
Table S1.

DCF Kinetics in the Multi-MPS Platform

The experimental data and modeling results regarding
DCF PK on-platform are presented in Figs. 3, 4, and 5 for the
gut only, liver only, and gut/liver study arms, respectively. In
the gut only arm, DCF was absorbed by the gut epithelium
from the apical to the basolateral side of the gut MPS and
then distributed to the “tissue-free” liver compartment and
the mixing chamber of the platform (Fig. 3a, b). DCF
metabolism in this arm was minimal and the concentration-
time profiles appeared to reach a plateau approximately 24 h
after the dose (Fig. 3b). In the liver only arm, DCF after
being dosed to the mixing chamber quickly distributed to the
tissue-free gut compartment and the liver MPS compartment
(Fig. 4a, b). In contrast to the gut only experimental arm,
DCF metabolism in the liver only arm was substantial and
diminishing drug concentrations were observed across the 3-
day experiment (Fig. 4b). Two discrete phases were observed
in the mixing chamber concentration-time profile: a rapid
decline in the first few hours when both distribution to the
other platform compartments and elimination were taking
place and a less steep decline in the remaining time when
elimination was the main driving force of the concentration-
time profile (Fig. 4b). In the gut/liver arm, DCF after being
dosed to the apical side of the gut MPS was absorbed through
the epithelial barrier to the basolateral side and then
distributed to the liver MPS compartment (main site of
elimination) and the mixing chamber of the platform
(Fig. 5a, b). Consequently, the obtained concentration-time
profiles in the mixing chamber have a clear ascending
(absorption) and descending (elimination) phase, similar to
a typical plasma concentration-time profile observed in
humans after an oral drug administration.

The employed mechanistic PK models for the three
different experimental arms (Figs. 3a, 4a, and 5a) accurately
described the observed experimental DCF data across all
platform compartments (Figs. 3b, 4b, and 5b). The reader is
referred to the Supplementary Material for further details
on the model assumptions and mass balance differential
equations. Convergence of the parameter estimation proce-
dure was indicated for all experimental arms by MCMC
trace plots and the calculation of the Gelman-Rubin
diagnostic (Figs. 3c, 4c, and 5c). All the model-related
parameters (both fixed and estimated) for the studied
experimental arms are summarized in Table I and the
complete posterior distributions with regard to the esti-
mated parameters are shown in Figs. 3d, 4d, and 5d.
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Model-based analysis of the experimental data across the
three different arms allowed mechanistic investigation of the
effect of gut-liver interaction on the PK-specific parameters
on-platform. Specifically, the parameter posterior distribu-
tions derived from the arm where both the gut and liver MPSs
were present on the platform (gut/liver arm) were compared
with those from the arms where only the gut or only the liver
MPS was on-platform. There was no evidence (Fig. 6) that
the gut-liver interaction/crosstalk alters the DCF permeability
across the gut MPS epithelial barrier (P) or the gut MPS
intrinsic metabolic clearance (CLint,). In contrast, our results
indicate with enough confidence (non-overlapping 90%
credible intervals) that the gut-liver crosstalk increases the
liver MPS intrinsic metabolic clearance (Clint;), although the
magnitude of the increase is marginal (Fig. 6).

The production of a major DCF CYP2C9 metabolite, 4-
OH-diclofenac (4-OH-DCF), was also monitored on-platform
and the associated mixing chamber concentration-time profiles
are presented in Fig. 7a. 4-OH-DCF was produced in all
experimental arms, however as expected, its levels were very
low (<0.05 uM) when only the gut MPS was present on-
platform. On the contrary, significant 4-OH-DCF production
was observed in the arms where the liver MPS was on-platform
(Fig. 7a). The area under the mixing chamber concentration-
time curve (AUC7,,) Was calculated for both DCF and 4-OH-
DCEF and the metabolite/parent AUC 7., ratio was calculated
to quantify the degree of parent-to-metabolite conversion in
each experimental arm (Fig. 7a). While this ratio was on average
only 0.01 for the gut only arm, it was 0.28 for the liver only arm
and 0.31 when both the gut and liver MPSs were present in the
platform (gut/liver arm).

Finally, to quantify the liver MPS intracellular accumu-
lation of DCF and 4-OH-DCEF, cell lysis was performed at the
end of the PK experiment (72 h after dosing) and the ratio
(Kp) of compound concentration in the cells to extracellular
compound concentration in the liver compartment medium
was calculated (Fig. 7b). It was evident that for both DCF and
4-OH-DCEF, intracellular accumulation was substantial and
the cellular concentrations were many-fold higher than the
extracellular concentrations measured in the liver compart-
ment of the platform (Fig. 7b). In addition, our results suggest
that gut-liver interaction does not substantially affect drug
partition to the liver micro-tissue (Fig. 7b). Specifically, DCF
and 4-OH-DCEF liver Kp values for the gut/liver arm were not
substantially different from the respective values when only
the liver MPS was on-platform (liver only arm).

HC Kinetics in the Multi-MPS Platform

HC was contained in the circulating common media, and
thus its kinetics on-platform were simultaneously investigated
across all the studied experimental arms. Mechanistic PK
models were developed with respect to both the gut only and
the liver only arms (Supplementary Figures S1, S2). These
models provided an accurate description of the respective
experimental HC data and allowed the estimation of mech-
anistic PK parameters of interest (P, CLint,, CLint;) for HC
in the absence of any gut-liver interaction (Supplementary
Figures S1, S2 and Table S2). Subsequently, these parameters
were used as inputs into a mechanistic PK model that assumes
that both the gut and liver MPSs are on-platform (Fig. 8a).



Gut/Liver MPS Integration for In Vitro PK Studies

a Gut b Gut (o Liver
600 T 5 —_
- % s
> @ - )
500 ] e @ 3
—o 4
T % % = G e} 3 @-@-UQ '50_
~g 400 = @ c 6 ®
3 K=l
Q £ =1
S 300 S _‘g’
< 2 g ¢
w200 2 o
K] £
51 E2
100 g £
n 2
0 <o
Gut /Liver  Gutonly Gut /Liver  Gutonly Gut / Liver Liver only
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represent the mean across the measurements obtained in four replicate platforms in each experimental arm; purple boxes
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Model simulations were then performed to assess the success experimental data in the gut/liver arm (Fig. 8b), providing
in predicting the experimental HC data in the gut/liver arm  further validation to the hypothesis that the effects of gut-
using parameters derived from the gut only and liver only liver interaction/crosstalk, if any, are not substantially affect-
arms. It was evident that model predictions (without any ing the PK processes (permeability, drug metabolism) taking
parameter fitting) accurately capture the observed HC place in the gut or the liver MPS.
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for the estimated model parameter

Off-Platform DCF and HC Kinetics in Single MPS
Technologies

DCF and HC kinetics were also investigated in a static
gut MPS off-platform. The observed data and their model-
based analysis are presented in Supplementary Figures S3
and S4 (for DCF and HC, respectively). In addition, HC
kinetics were investigated in the LiverChip™ (isolated liver
MPS off-platform). The derived data and their model-based
analysis are presented in Supplementary Figure S5. The
kinetics of DCF in the LiverChip™ have been extensively
studied and reported in a previous work (24). The values of
the mechanistic PK parameters of interest (P, CLint,, CLint;)
obtained from the model-based analysis of all these off-
platform experimental data are summarized in Supplemen-
tary Table S3. These values were generally comparable to
those derived on-platform in the gut only or liver only arms as
the ratio of the off-platform to the respective on-platform
values was between 0.77 and 1.19 for all PK parameters of

interest and for both DCF and HC with the sole exception of
DCF CLint, (value obtained in the static gut MPS was 1.92
times the value obtained in the gut only arm on-platform).
Note that the on-platform values are not expected to exactly
match those derived off-platform due to nominal system
(hardware) and operational differences (e.g., inter- and intra-
MPS flow rates). However, a rough agreement provides
further confidence in the developed multi-MPS platform as
it illustrates that the hardware employed does not have any
negative impact on the underlying biological processes taking
place.

DISCUSSION

The emerging field of MPS coupled with recent
advances in the development of bio-engineered fluidic
platforms not only allows more physiologically realistic
in vitro models of human organ/tissue function but also
permits their interconnection towards a “physiome-on-a-
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liver MPSs are present in the platform (“Gut/Liver”). a Structure of the mechanistic PK model to describe the “Gut/
Liver” arm DCF data. The red square marker indicates the site of DCF administration (apical side of the gut MPS). P
DCEF permeability coefficient across the epithelial barrier of the gut MPS, CLint, intrinsic metabolic DCF clearance of the
gut MPS, CLint; intrinsic metabolic DCF clearance of the liver MPS, Q;,, systemic flow rate during platform operation. b
Mechanistic PK model fit (red line) on top of the experimentally observed DCF data (closed gray circles) across the
different platform compartments. ¢ Trace plots of three different MCMC chains started from different initial estimates
(plotted in different colors); values for each estimated parameter (in the log-transformed domain) are plotted against the
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chip” paradigm (also referred to as “human-on-a-chip”)
(36,37). Multi-organ MPS technologies, encompassing
organ-organ interaction and communication, can more
closely capture the complexity of in vivo human physiol-

(PDMS), the fluidic plate in this platform is constructed from
polysulfone (PSF). PDMS is a material known to adsorb and
partition hydrophobic and high logD compounds (38), which
can significantly hinder quantitative pharmacology and drug

ogy, and thus hold promise for significant applications
related to disease biology, personalized pharmacotherapy,
and drug development. In the current work, we focused
on the application of a novel multi-MPS platform to
interconnect a gut and a liver MPS, and investigate
different important PK processes taking place after oral
drug administration (e.g., intestinal absorption, hepatic
metabolism).

The multi-MPS platform employed in this work has
unique properties favoring its use for quantitative PK and, in
extension, pharmacodynamic (PD) investigations, as it was
specifically designed and developed with this purpose in
mind. In contrast to other existing individual MPS and multi-
MPS devices that are constructed from polydimethylsiloxane

development-related applications (3,39). PSF reduces these
concerns because of its superior properties in terms of
minimal surface adsorption and bulk absorption of
hydrophobic/lipophilic molecules (40). We recently illustrated
using the LiverChip™ technology (made with the same
material as the multi-MPS platform employed in this work)
the absence of non-specific binding to PSF for six drugs,
including DCF, spanning a range of different physicochemical
properties (24).

Additionally, in contrast to the majority of the available
multi-MPS technologies, which are configured as closed
systems and operate with very small fluid volumes (pL range)
using microfluidic chips, our multi-MPS platform has an open
system configuration and operates at the mesofluidic scale
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(mL range). This offers significant advantages in the context
of quantitative PK/PD investigations. Firstly, the open system
configuration allows direct, easy, and frequent sampling of
circulating drugs, metabolites, and other biomarkers across
the different platform compartments and consequently per-
mits the generation of concentration-time profiles that can be
computationally analyzed (e.g., see Figs. 3, 4, and 5).
Secondly, the meso-scale medium volumes and tissue sizes
allow quantitative high-content measurements with frequent
sampling.

Finally, another unique advantage of the employed
multi-MPS platform for quantitative PK/PD studies is that it
can be flexibly configured through the dynamic control of the
flows inter-connecting the different platform compartments.
This allowed in this work the exclusion of two of the platform
compartments and execution of PK studies in a dedicated gut-
liver interaction system that has an MPS interconnection
scheme that mimics the analogous physiology and flow
partition in humans. This set-up can be easily altered to
incorporate additional organ(s) MPS referring to the efficacy
or the toxicity site of a drug under investigation. Dynamic
control of the different flow rates can enable precise
modulation of concentration-time profiles in such down-
stream organ MPSs of pharmacological/PD interest.

A gut-liver interaction system is an important building
block for any multi-MPS technology focusing on PK/PD
investigations. With that in mind, we demonstrated in this
work that a gut and a liver MPS can be fluidically coupled
with circulating common medium without compromising MPS
functionality. More specifically, we quantified tissue-specific
phenotypic metrics associated with these two MPSs and
illustrated acceptable functionality and no difference between
experimental arms where both the gut and liver MPSs were
on-platform and arms where only the gut or only the liver
MPS was on-platform (Fig. 2). In addition to that, the
absolute values of these on-platform metrics were not
substantially different compared to the respective off-
platform measurements in conventional single-MPS technol-
ogies (static gut, LiverChip™) and were also numerically
comparable to previously reported values (24,30,41-43). All
the above clearly support that the gut-liver interaction and

crosstalk on the multi-MPS platform is not negatively
affecting the individual MPS tissue health and function.

In order to practically illustrate the value of the
developed multi-MPS platform for in vitro PK studies, we
investigated the kinetics of DCF and HC in an integrated gut-
liver system. Our model-guided experimental design allowed
us to successfully select a DCF dose that yielded (across the
different experimental arms) concentrations in the mixing
chamber of the platform that are in the range of the clinically
observed DCF plasma concentrations following standard
therapeutic dosing (32). This allowed the investigation of
DCF PK-related processes in pharmacologically relevant
concentrations. A model-based approach was used in this
work not only to guide the experimental design but also to
analyze the obtained experimental data. Our mechanistic PK
models were developed taking into account the operational
characteristics of the platform (e.g., flow rates, volumes) and
the MPS interconnection scheme. By fitting these models to
the experimental data, we estimated the intrinsic PK-related
parameters of interest (intrinsic metabolic clearance of the
gut and liver MPS, permeability across the epithelial barrier
of the gut MPS) disentangled to the greatest possible degree
from non-biological platform-specific processes (e.g., circula-
tion and distribution across the different platform compart-
ments). The model-obtained PK parameters from this
integrated gut-liver system (e.g., DCF: P = 14.7 x 10°° cm/s,
Clint; = 17 pL/min/10° cells) were in agreement with previous
reports in Caco-2 cell cultures (DCF: P = 17.8 x 107 cm/s
(44)) and human hepatocyte cultures (DCF: Clint; = 17.8 pL/
min/10° cells (24). This agreement highlights the value of
mechanistic modeling for the analysis and robust interpreta-
tion of the output obtained from such a complex in vitro
system.

In addition, model-based analysis of the data obtained
across different on-platform experimental arms (gut only,
liver only, gut/liver) indicated that (for both DCF and HC)
the intrinsic PK-related processes of interest (e.g., permeabil-
ity, metabolism) are not substantially affected from the
interaction/communication between the gut and the liver
MPSs. This finding builds further confidence with regard to
the application of multi-MPS technologies for quantitative PK
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studies, as prior to this work, there was no direct evidence to
robustly support that the interconnection of MPSs of different
organs does not impede intrinsic PK-related processes such as
hepatic metabolism. In contrast, our results suggested that the
liver MPS intrinsic metabolic clearance for DCF was upreg-
ulated to a small degree by the on-platform crosstalk between
the gut and liver MPSs (Fig. 6). This observation was
followed up and further validated in independent work in
the context of long-term cell culture (30). Specifically, it was
found that the production of 4-OH-DCF (a CYP2C9

metabolite of DCF) was moderately but statistically signifi-
cantly higher in liver MPSs that have been previously
interacting with a gut MPS for a 2-week period, compared
to liver MPSs that were maintained in isolation for the same
period. These findings illustrate that the fluidic coupling of
the gut and liver MPSs may allow exchange of biochemical
signals that modulate hepatic metabolism. It should be noted,
however, that the available data to date indicate that even if
the effect of such a gut-liver crosstalk exists, its magnitude is
not enough to dramatically affect the in vitro-obtained
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intrinsic hepatic clearance and subsequently the in vivo
clearance predictions. Further work is needed across a large
and diverse set of compounds to thoroughly understand the
effects of gut-liver communication on different metabolic
pathways and investigate the degree to which gut-liver
communication can improve in vivo PK predictions.

Two additional PK-related aspects were also explored in
this work. Firstly, by measuring the formation and kinetics of
4-OH-DCF on-platform, it was illustrated that the in vivo
DCF primary metabolite in humans was detectable in our
in vitro system, and that this metabolite (formed mainly in the
liver MPS) circulated within the common medium across the
different compartments of the multi-MPS platform. Given
that off-target drug toxicity in humans frequently occurs due
to metabolites, the ability of multi-MPS systems to circulate
the hepatocyte-formed metabolites to other MPS through a
common medium gives the ability to study such toxicity
effects early during the development of a new compound.
Secondly, by measuring DCF concentrations in the liver MPS
tissue lysate, it was illustrated that the intracellular MPS drug
concentrations can be substantially higher than the concen-
trations measured in the surrounding medium, which is in line
with previous literature suggesting high intracellular binding
of DCF (45). Thus, it becomes evident that investigation of
the medium-to-tissue drug partition is essential if quantitative
understanding of drug efficacy/toxicity in an intracellular
target is desired using these multi-MPS platforms.

A significant challenge during the development of MPS
technologies and multi-MPS platforms is their appropriate
scaling to create an in vitro system that recapitulates the
desired aspects of in vivo human physiology. Scaling is the
specification of the in vitro system characteristics and
operating parameters relative to the in vivo system that one

is trying to model. Several approaches, including direct linear,
allometric, and functional scaling, have been proposed
(36,46-49) and utilized in various efforts to reverse-engineer
MPS technologies from human physiology. This aspect was
carefully considered in this work. Firstly, the cell type
compositions in our liver MPS (10:1 hepatocytes to Kupffer
cells) and gut MPS (9:1 absorptive enterocytes (Caco2-BBe)
to mucus-producing Goblet cells (HT29-MTX)) were selected
to mimic the same cell ratios in vivo (8,50). Secondly, our
system was designed so that the ratio of the surface area of
the gut MPS epithelial barrier (1.12 cm?) to the number of
hepatocytes in the liver MPS (600,000) is similar to the ratio
of the small intestinal epithelium surface area (30 m* (51)) to
the number of hepatocytes (2.16 x 10! (27,52)) in humans
(ratio is 1.87 x 107 in our in vitro system and 1.39 x 107'°
in vivo), while utilizing a commercially available transwell
system for the gut MPS. Finally, our integrated gut-liver
system was designed so that the MPS interconnection scheme
and flow partition closely mirror human physiology (27) (see
the “Methods” section and Fig. 1).

However, other aspects of meso-scale systems such as
ours are substantially different than in vivo, in particular with
respect to medium-to-tissue ratio, which is larger than if it was
linearly scaled from the in vivo blood-to-tissue volume ratio.
Our selection of the larger ratio was driven by the needs of
fluidics control, sampling requirements, cell resources, and a
desire to use where possible commercially available compo-
nents (e.g., transwell culture chambers). Nonetheless, it is
important to recognize that strict adherence to mimic in vivo
physiological relationships (linear or allometric scaling) is not
always necessarily desirable and rather that modifications
might be needed to reproduce function for specific MPS
applications (49). In addition, it is inevitable that multi-MPS
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technologies will have components of the human physiology
that are missing or neglected and thus the associated crude
in vitro output (e.g., measured circulating drug concentrations
on-platform) is not expected to be directly representative of
the in vivo output (e.g., plasma concentrations in humans) or
directly scalable to it (e.g., simply by a factor of miniaturiza-
tion). Due to these inherent differences of MPSs compared to
humans as well as needs driven by research applications, our
framework for utilizing MPS is to include an additional step
of in vitro-to-in vivo translation, as was described in our
previous work (24). Specifically, we use model-based analysis
of the in vitro output to derive the biological parameters of
interest, disentangled as much as possible from the in vitro
system characteristics. Then, to translate the results to an
in vivo context, we use computational systems pharmacology/
biology approaches to integrate these parameters with the
characteristics of the human body (e.g., number of hepato-
cytes in the human liver) and other in vivo processes that are
missing from the in vitro system (e.g., drug binding to human
plasma proteins) (24).

Recently, we illustrated in an independent work that the
developed multi-MPS platform supports long-term functional
maintenance of interacting gut and liver MPSs for over 2 weeks
(30). Combined with the present work, it becomes evident that the
presented gut-liver system has the potential for several PK-related
applications that are particularly challenging with the current
routinely employed in vitro systems, including bioavailability
prediction, investigation of low-clearance compounds, drug-drug
interactions at both the intestinal and hepatic level, effects of
repeated drug exposure and metabolite accumulation, and effects
of inflammatory chronic diseases on drug PK. The developed
system has, however, limitations that need to be overcome in
order for this technology to reach its maximum potential. Firstly,
the gut MPS in this study consisted of Caco-2/HT29-MTX cells,
which do not fully recapitulate the metabolic functions of the
intestinal tissue in vivo. Ongoing efforts are under way in our lab
and others to develop primary intestinal monolayer cultures using
organoids derived from patient biopsies. Once fully characterized,
the primary gut MPS can be easily incorporated into the
developed platform for improved functionality. Secondly, the
liver MPS technology used in this work, similar to other
conventional hepatic in vitro systems (e.g., hepatocyte suspen-
sions, microsomes) (53), has the tendency to under-predict in vivo
hepatic clearance (24). This trend of under-prediction and its
origins is a subject of ongoing research in the drug metabolism
field (54,55) and we are also working towards directions that can
improve this aspect of the liver MPS performance (e.g., control of
micro-tissue oxygenation, medium composition, programmable
medium exchange and waste removal).

CONCLUSION

This work builds further confidence with regard to the
application of multi-MPS technologies for quantitative PK
and in extension PD investigations. We envision that our
integrative approach, which combines multi-cellular tissue
models, multi-MPS bioreactor platforms, and quantitative
mechanistic modeling, will have broad applicability in pre-
clinical drug development, to better bridge the gap between
animal and human studies.
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