6,017 research outputs found

    An Adaptive Algorithm for Synchronization in Diffusively Coupled Systems

    Full text link
    We present an adaptive algorithm that guarantees synchronization in diffusively coupled systems. We first consider compartmental systems of ODEs, where each compartment represents a spatial domain of components interconnected through diffusion terms with like components in different compartments. Each set of like components may have its own weighted undirected graph describing the topology of the interconnection between compartments. The link weights are updated adaptively according to the magnitude of the difference between neighboring agents connected by the link. We next consider reaction-diffusion PDEs with Neumann boundary conditions, and derive an analogous algorithm guaranteeing spatial homogenization of solutions. We provide a numerical example demonstrating the results

    Sparsity-Sensitive Finite Abstraction

    Full text link
    Abstraction of a continuous-space model into a finite state and input dynamical model is a key step in formal controller synthesis tools. To date, these software tools have been limited to systems of modest size (typically ≤\leq 6 dimensions) because the abstraction procedure suffers from an exponential runtime with respect to the sum of state and input dimensions. We present a simple modification to the abstraction algorithm that dramatically reduces the computation time for systems exhibiting a sparse interconnection structure. This modified procedure recovers the same abstraction as the one computed by a brute force algorithm that disregards the sparsity. Examples highlight speed-ups from existing benchmarks in the literature, synthesis of a safety supervisory controller for a 12-dimensional and abstraction of a 51-dimensional vehicular traffic network

    The Kalai-Smorodinsky Bargaining Solution Manipulated by Pre-Donations is Concessionary

    Get PDF
    This study examines the manipulability of simple n-person bargaining problems by pre-donations where the Kalai-Smorodinsky solution is operant. We extend previous results on the manipulation of two-person bargaining problems to the n-person case and show that in a world where a prebargaining stage is instituted in which the bargainers may unilaterally alter the bargaining problem, bargainers with greater ideal payoffs transform the bargaining set into one on which the Kalai- Smorodinsky solution distributes payoffs in accordance with the Concessionary division rule of disputed property.Bargaining Solutions, Pre-donation, Kalai-Smorodinsky

    A Redesigned Benders Decomposition Approach for Large-Scale In-Transit Freight Consolidation Operations

    Full text link
    The growth in online shopping and third party logistics has caused a revival of interest in finding optimal solutions to the large scale in-transit freight consolidation problem. Given the shipment date, size, origin, destination, and due dates of multiple shipments distributed over space and time, the problem requires determining when to consolidate some of these shipments into one shipment at an intermediate consolidation point so as to minimize shipping costs while satisfying the due date constraints. In this paper, we develop a mixed-integer programming formulation for a multi-period freight consolidation problem that involves multiple products, suppliers, and potential consolidation points. Benders decomposition is then used to replace a large number of integer freight-consolidation variables by a small number of continuous variables that reduces the size of the problem without impacting optimality. Our results show that Benders decomposition provides a significant scale-up in the performance of the solver. We demonstrate our approach using a large-scale case with more than 27.5 million variables and 9.2 million constraints
    • …
    corecore