238 research outputs found
Flow-History-Dependent Behavior in Entangled Polymer Melt Flow with Multiscale Simulation
Polymer melts represent the flow-history-dependent behavior. To clearly show
this behavior, we have investigated flow behavior of an entangled polymer melt
around two cylinders placed in tandem along the flow direction in a two
dimensional periodic system. In this system, the polymer states around a
cylinder in downstream side are different from the ones around another cylinder
in upstream side because the former ones have a memory of a strain experienced
when passing around the cylinder in upstream side but the latter ones do not
have the memory. Therefore, the shear stress distributions around two cylinders
are found to be different from each other. Moreover, we have found that the
averaged flow velocity decreases accordingly with increasing the distance
between two cylinders while the applied external force is constant. While this
behavior is consistent with that of the Newtonian fluid, the
flow-history-dependent behavior enhances the reduction of the flow resistance.Comment: 6 pages, 3 figures, Proceedings of 5th International Mini-Symposium
on Liquid
Incommensurability and edge states in the one-dimensional S=1 bilinear-biquadratic model
Commensurate-incommensurate change on the one-dimensional S=1
bilinear-biquadratic model () is examined. The gapped
Haldane phase has two subphases (the commensurate Haldane subphase and the
incommensurate Haldane subphase) and the commensurate-incommensurate change
point (the Affleck-Kennedy-Lieb-Tasaki point, ). There have been
two different analytical predictions about the static structure factor in the
neighborhood of this point. By using the S{\o}rensen-Affleck prescription,
these static structure factors are related to the Green functions, and also to
the energy gap behaviors. Numerical calculations support one of the
predictions. Accordingly, the commensurate-incommensurate change is recognized
as a motion of a pair of poles in the complex plane.Comment: 29 pages, 15 figure
Suzaku Reveals Helium-burning Products in the X-ray Emitting Planetary Nebula BD+303639
BD+303639, the brightest planetary nebula at X-ray energies, was observed
with Suzaku, an X-ray observatory launched on 2005 July 10. Using the X-ray
Imaging Spectrometer, the K-lines from C VI, O VII, and O VIII were resolved
for the first time, and C/O, N/O, and Ne/O abundance ratios determined. The C/O
and Ne/O abundance ratios exceed the solar value by a factor of at least 30 and
5, respectively. These results indicate that the X-rays are emitted mainly by
helium shell-burning products.Comment: 12 pages, 4 figures, accepted for publication in The Astrophysical
Journal Letter
Multiscale Simulation of History Dependent Flow in Polymer Melt
We have developed a new multiscale simulation technique to investigate
history-dependent flow behavior of entangled polymer melt, using a smoothed
particle hydrodynamics simulation with microscopic simulators that account for
the dynamics of entangled polymers acting on each fluid element. The multiscale
simulation technique is applied to entangled polymer melt flow around a
circular obstacle in a two-dimensional periodic system. It is found that the
strain-rate history-dependent stress of the entangled polymer melt affects its
flow behavior, and the memory in the stress causes nonlinear behavior even in
the regions where . The spatial distribution of the
entanglements is also investigated. The slightly low entanglement region
is observed around the obstacle and is found to be broaden in the downstream
region.Comment: 4 pages, 3 figure
Suzaku Reveals He-burning Products in the X-ray Emitting Planetary Nebula BD +30deg 3639
BD +30deg 3639, the brightest planetary nebula at X-ray energies, was observed with Suzaku, an X-ray observatory launched on 2005 July 10. Using the X-ray Imaging Spectrometer, the K-lines from C VI, O VII, and O VIII were resolved for the first time, and C/O, N/O, and Ne/O abundance ratios determined. The C/O abundance ratio exceeds the solar value by nearly two orders of magnitude, and that of Ne/O by at least a factor of 5. These results indicate that the X-rays are emitted mainly by helium shell-burning products
Advances in tooth agenesis and tooth regeneration
The lack of treatment options for congenital (0.1%) and partial (10%) tooth anomalies highlights the need to develop innovative strategies. Over two decades of dedicated research have led to breakthroughs in the treatment of congenital and acquired tooth loss. We revealed that by inactivating USAG-1, congenital tooth agenesis can be successfully ameliorated during early tooth development and that the inactivation promotes late-stage tooth morphogenesis in double knockout mice. Furthermore, Anti- USAG-1 antibody treatment in mice is effective in tooth regeneration and can be a breakthrough in treating tooth anomalies in humans. With approximately 0.1% of the population suffering from congenital tooth agenesis and 10% of children worldwide suffering from partial tooth loss, early diagnosis will improve outcomes and the quality of life of patients. Understanding the role of pathogenic USAG-1 variants, their interacting gene partners, and their protein functions will help develop critical biomarkers. Advances in next-generation sequencing, mass spectrometry, and imaging technologies will assist in developing companion and predictive biomarkers to help identify patients who will benefit from tooth regeneration
Anti–USAG-1 therapy for tooth regeneration through enhanced BMP signaling
先天性無歯症に対する分子標的薬の開発 --USAG-1を標的分子とした歯再生治療--. 京都大学プレスリリース. 2021-02-15.Uterine sensitization–associated gene-1 (USAG-1) deficiency leads to enhanced bone morphogenetic protein (BMP) signaling, leading to supernumerary teeth formation. Furthermore, antibodies interfering with binding of USAG-1 to BMP, but not lipoprotein receptor–related protein 5/6 (LRP5/6), accelerate tooth development. Since USAG-1 inhibits Wnt and BMP signals, the essential factors for tooth development, via direct binding to BMP and Wnt coreceptor LRP5/6, we hypothesized that USAG-1 plays key regulatory roles in suppressing tooth development. However, the involvement of USAG-1 in various types of congenital tooth agenesis remains unknown. Here, we show that blocking USAG-1 function through USAG-1 knockout or anti–USAG-1 antibody administration relieves congenital tooth agenesis caused by various genetic abnormalities in mice. Our results demonstrate that USAG-1 controls the number of teeth by inhibiting development of potential tooth germs in wild-type or mutant mice missing teeth. Anti–USAG-1 antibody administration is, therefore, a promising approach for tooth regeneration therapy
Enzymatic removal of cellulose from cotton/polyester fabric blends
The production of light-weight polyester fabrics from a polyester/cotton blended fabric, by means of the enzymatic removal of the cellulosic part of the material, was investigated. The removal of cotton from the
blended fabric yielded more than 80% of insoluble microfibrillar material by the combined action of high beating effects and cellulase hydrolysis.Other major features of this enzymatic process for converting cotton fibers into microfibrillar material are bath ratio, enzyme dosage and treatment time
- …