2,372 research outputs found
The Globular Cluster System of the Spiral Galaxy NGC7814
We present the results of a wide-field photometric study of the globular
cluster (GC) system of the edge-on Sab spiral NGC7814. This is the first spiral
to be fully analyzed from our survey of the GC systems of a large sample of
galaxies beyond the Local Group. NGC7814 is of particular interest because a
previous study estimated that it has 500-1000 GCs, giving it the largest
specific frequency (S_N) known for a spiral. Understanding this galaxy's GC
system is important in terms of our understanding of the GC populations of
spirals in general and has implications for the formation of massive galaxies.
We observed the galaxy in BVR filters with the WIYN 3.5-m telescope, and used
image classification and three-color photometry to select GC candidates. We
also analyzed archival HST WFPC2 images of NGC7814, both to help quantify the
contamination level of the WIYN GC candidate list and to detect GCs in the
inner part of the galaxy halo. Combining HST data with high-quality
ground-based images allows us to trace the entire radial extent of this
galaxy's GC system and determine the total number of GCs directly through
observation. We find that rather than being an especially high-S_N spiral,
NGC7814 has <200 GCs and S_N ~ 1, making it comparable to the two most
well-studied spirals, the Milky Way and M31. We explore the implications of
these results for models of the formation of galaxies and their GC systems. The
initial results from our survey suggest that the GC systems of typical
ellipticals can be accounted for by the merger of two or more spirals, but that
for highly-luminous ellipticals, additional physical processes may be needed.Comment: 28 pages, incl. 4 figures; accepted for publication in The
Astronomical Journal, November 2003 issu
Markov Chain Monte Carlo: Can We Trust the Third Significant Figure?
Current reporting of results based on Markov chain Monte Carlo computations
could be improved. In particular, a measure of the accuracy of the resulting
estimates is rarely reported. Thus we have little ability to objectively assess
the quality of the reported estimates. We address this issue in that we discuss
why Monte Carlo standard errors are important, how they can be easily
calculated in Markov chain Monte Carlo and how they can be used to decide when
to stop the simulation. We compare their use to a popular alternative in the
context of two examples.Comment: Published in at http://dx.doi.org/10.1214/08-STS257 the Statistical
Science (http://www.imstat.org/sts/) by the Institute of Mathematical
Statistics (http://www.imstat.org
The growth of galaxies in cosmological simulations of structure formation
We use hydrodynamic simulations to examine how the baryonic components of
galaxies are assembled, focusing on the relative importance of mergers and
smooth accretion in the formation of ~L_* systems. In our primary simulation,
which models a (50\hmpc)^3 comoving volume of a Lambda-dominated cold dark
matter universe, the space density of objects at our (64-particle) baryon mass
resolution threshold, M_c=5.4e10 M_sun, corresponds to that of observed
galaxies with L~L_*/4. Galaxies above this threshold gain most of their mass by
accretion rather than by mergers. At the redshift of peak mass growth, z~2,
accretion dominates over merging by about 4:1. The mean accretion rate per
galaxy declines from ~40 M_sun/yr at z=2 to ~10 M_sun/yr at z=0, while the
merging rate peaks later (z~1) and declines more slowly, so by z=0 the ratio is
about 2:1. We cannot distinguish truly smooth accretion from merging with
objects below our mass resolution threshold, but extrapolating our measured
mass spectrum of merging objects, dP/dM ~ M^a with a ~ -1, implies that
sub-resolution mergers would add relatively little mass. The global star
formation history in these simulations tracks the mass accretion rate rather
than the merger rate. At low redshift, destruction of galaxies by mergers is
approximately balanced by the growth of new systems, so the comoving space
density of resolved galaxies stays nearly constant despite significant mass
evolution at the galaxy-by-galaxy level. The predicted merger rate at z<~1
agrees with recent estimates from close pairs in the CFRS and CNOC2 redshift
surveys.Comment: Submitted to ApJ, 35 pp including 15 fig
Dynamical Evolution of Globular Clusters in Hierarchical Cosmology
We probe the evolution of globular clusters that could form in giant
molecular clouds within high-redshift galaxies. Numerical simulations
demonstrate that the large and dense enough gas clouds assemble naturally in
current hierarchical models of galaxy formation. These clouds are enriched with
heavy elements from earlier stars and could produce star clusters in a similar
way to nearby molecular clouds. The masses and sizes of the model clusters are
in excellent agreement with the observations of young massive clusters. Do
these model clusters evolve into globular clusters that we see in our and
external galaxies? In order to study their dynamical evolution, we calculate
the orbits of model clusters using the outputs of the cosmological simulation
of a Milky Way-sized galaxy. We find that at present the orbits are isotropic
in the inner 50 kpc of the Galaxy and preferentially radial at larger
distances. All clusters located outside 10 kpc from the center formed in the
now-disrupted satellite galaxies. The spatial distribution of model clusters is
spheroidal, with a power-law density profile consistent with observations. The
combination of two-body scattering, tidal shocks, and stellar evolution results
in the evolution of the cluster mass function from an initial power law to the
observed log-normal distribution.Comment: 5 pages, proceedings of IAU 246 "Dynamical Evolution of Dense Stellar
Systems", eds. Vesperini, Giersz, Sill
Globular Cluster Systems of Early-Type Galaxies
Properties of 53 globular cluster systems are investigated. Strong
correlations are found between parent galaxy luminosity and both the slope of
the radial density profile for clusters and the width of the cluster color
(metallicity) distribution. These correlations are in the sense that the most
luminous early-type galaxies are embedded in cluster systems that have the
shallowest radial gradients and exhibit the broadest color distributions. The
data suggest a scenario in which luminous early-type galaxies have a more
complex evolutionary history than fainter ones. A problem with the
interpretation of the present data is that it is difficult (or impossible) to
disentangle the strongly correlated effects of high parent galaxy luminosity,
presence of a core or boxy isophotes, and shallow radial cluster density
gradients.Comment: Contains complete Table 1 which had been truncated. To appear in the
Astrophysical Journal. Also available at http://www.hia.nrc.ca/eprints.htm
K-T impact(s): Continental, oceanic or both
Although geochemical and mineralogical evidence indicate that a major accretionary event occurred at the K-T boundary, no impact crater of suitable size and age was recognized. The 35 km Manson Structure, Iowa, was suggested recently as a possibility and Ar-40/Ar-39 determinations indicate that its formation age is indistinguishable from that of the K-T boundary. In order to test a possible association between Manson and the K-T boundary clay, the geochemistry and mineralogy of the K-T boundary clays at the Scollard Canyon section, Alberta and the Starkville South section, Colorado are compared with three dominant lithologies affected by the Manson impact: Proterozoic red clastics, underlying late-state granites, and gneisses. The chemical and mineralogical makeup of the Scollard Canyon boundary clay and its clastic constituents are presented, commenting on the implications for impact models. An impact into crystalline material of continental affinity appears to be required to explain the mineralogy and chemistry of the Scollard Canyon (and other Western N. American K-T sections). The low REE abundances of some K-T boundary layers are unusual but perhaps attempts should be made to understand the contributions of individual crustal components (e.g., carbonates, arkoses) as well as the potential for alteration involving these and other elements during and after impact-induced vaporization, before mantle excavation is invoked. If further studies confirm the results of published studies of marine boundary clays that indicate an oceanic target, attention must be paid to the possibility that multiple impacts occurred at the K-T boundary - one or more on the continents and one or more in the ocean
Flexible Emergent Vegetation in Staggered Configuration as Bioshields
Source: ICHE Conference Archive - https://mdi-de.baw.de/icheArchiv
Modeling the dynamical evolution of the M87 globular cluster system
We study the dynamical evolution of the M87 globular cluster system (GCS)
with a number of numerical simulations. We explore a range of different initial
conditions for the GCS mass function (GCMF), for the GCS spatial distribution
and for the GCS velocity distribution. We confirm that an initial power-law
GCMF like that observed in young cluster systems can be readily transformed
through dynamical processes into a bell-shaped GCMF. However,only models with
initial velocity distributions characterized by a strong radial anisotropy
increasing with the galactocentric distance are able to reproduce the observed
constancy of the GCMF at all radii.We show that such strongly radial orbital
distributions are inconsistent with the observed kinematics of the M87 GCS. The
evolution of models with a bell-shaped GCMF with a turnover similar to that
currently observed in old GCS is also investigated. We show that models with
this initial GCMF can satisfy all the observational constraints currently
available on the GCS spatial distribution,the GCS velocity distribution and on
the GCMF properties.In particular these models successfully reproduce both the
lack of a radial gradient of the GCS mean mass recently found in an analysis of
HST images of M87 at multiple locations, and the observed kinematics of the M87
GCS.Our simulations also show that evolutionary processes significantly affect
the initial GCS properties by leading to the disruption of many clusters and
changing the masses of those which survive.The preferential disruption of inner
clusters flattens the initial GCS number density profile and it can explain the
rising specific frequency with radius; we show that the inner flattening
observed in the M87 GCS spatial distribution can be the result of the effects
of dynamical evolution on an initially steep density profile. (abridged)Comment: 15 pages,14 figures;accepted for publication in The Astrophysical
Journa
- …