2,372 research outputs found

    The Globular Cluster System of the Spiral Galaxy NGC7814

    Full text link
    We present the results of a wide-field photometric study of the globular cluster (GC) system of the edge-on Sab spiral NGC7814. This is the first spiral to be fully analyzed from our survey of the GC systems of a large sample of galaxies beyond the Local Group. NGC7814 is of particular interest because a previous study estimated that it has 500-1000 GCs, giving it the largest specific frequency (S_N) known for a spiral. Understanding this galaxy's GC system is important in terms of our understanding of the GC populations of spirals in general and has implications for the formation of massive galaxies. We observed the galaxy in BVR filters with the WIYN 3.5-m telescope, and used image classification and three-color photometry to select GC candidates. We also analyzed archival HST WFPC2 images of NGC7814, both to help quantify the contamination level of the WIYN GC candidate list and to detect GCs in the inner part of the galaxy halo. Combining HST data with high-quality ground-based images allows us to trace the entire radial extent of this galaxy's GC system and determine the total number of GCs directly through observation. We find that rather than being an especially high-S_N spiral, NGC7814 has <200 GCs and S_N ~ 1, making it comparable to the two most well-studied spirals, the Milky Way and M31. We explore the implications of these results for models of the formation of galaxies and their GC systems. The initial results from our survey suggest that the GC systems of typical ellipticals can be accounted for by the merger of two or more spirals, but that for highly-luminous ellipticals, additional physical processes may be needed.Comment: 28 pages, incl. 4 figures; accepted for publication in The Astronomical Journal, November 2003 issu

    Markov Chain Monte Carlo: Can We Trust the Third Significant Figure?

    Full text link
    Current reporting of results based on Markov chain Monte Carlo computations could be improved. In particular, a measure of the accuracy of the resulting estimates is rarely reported. Thus we have little ability to objectively assess the quality of the reported estimates. We address this issue in that we discuss why Monte Carlo standard errors are important, how they can be easily calculated in Markov chain Monte Carlo and how they can be used to decide when to stop the simulation. We compare their use to a popular alternative in the context of two examples.Comment: Published in at http://dx.doi.org/10.1214/08-STS257 the Statistical Science (http://www.imstat.org/sts/) by the Institute of Mathematical Statistics (http://www.imstat.org

    The growth of galaxies in cosmological simulations of structure formation

    Get PDF
    We use hydrodynamic simulations to examine how the baryonic components of galaxies are assembled, focusing on the relative importance of mergers and smooth accretion in the formation of ~L_* systems. In our primary simulation, which models a (50\hmpc)^3 comoving volume of a Lambda-dominated cold dark matter universe, the space density of objects at our (64-particle) baryon mass resolution threshold, M_c=5.4e10 M_sun, corresponds to that of observed galaxies with L~L_*/4. Galaxies above this threshold gain most of their mass by accretion rather than by mergers. At the redshift of peak mass growth, z~2, accretion dominates over merging by about 4:1. The mean accretion rate per galaxy declines from ~40 M_sun/yr at z=2 to ~10 M_sun/yr at z=0, while the merging rate peaks later (z~1) and declines more slowly, so by z=0 the ratio is about 2:1. We cannot distinguish truly smooth accretion from merging with objects below our mass resolution threshold, but extrapolating our measured mass spectrum of merging objects, dP/dM ~ M^a with a ~ -1, implies that sub-resolution mergers would add relatively little mass. The global star formation history in these simulations tracks the mass accretion rate rather than the merger rate. At low redshift, destruction of galaxies by mergers is approximately balanced by the growth of new systems, so the comoving space density of resolved galaxies stays nearly constant despite significant mass evolution at the galaxy-by-galaxy level. The predicted merger rate at z<~1 agrees with recent estimates from close pairs in the CFRS and CNOC2 redshift surveys.Comment: Submitted to ApJ, 35 pp including 15 fig

    Dynamical Evolution of Globular Clusters in Hierarchical Cosmology

    Get PDF
    We probe the evolution of globular clusters that could form in giant molecular clouds within high-redshift galaxies. Numerical simulations demonstrate that the large and dense enough gas clouds assemble naturally in current hierarchical models of galaxy formation. These clouds are enriched with heavy elements from earlier stars and could produce star clusters in a similar way to nearby molecular clouds. The masses and sizes of the model clusters are in excellent agreement with the observations of young massive clusters. Do these model clusters evolve into globular clusters that we see in our and external galaxies? In order to study their dynamical evolution, we calculate the orbits of model clusters using the outputs of the cosmological simulation of a Milky Way-sized galaxy. We find that at present the orbits are isotropic in the inner 50 kpc of the Galaxy and preferentially radial at larger distances. All clusters located outside 10 kpc from the center formed in the now-disrupted satellite galaxies. The spatial distribution of model clusters is spheroidal, with a power-law density profile consistent with observations. The combination of two-body scattering, tidal shocks, and stellar evolution results in the evolution of the cluster mass function from an initial power law to the observed log-normal distribution.Comment: 5 pages, proceedings of IAU 246 "Dynamical Evolution of Dense Stellar Systems", eds. Vesperini, Giersz, Sill

    Globular Cluster Systems of Early-Type Galaxies

    Get PDF
    Properties of 53 globular cluster systems are investigated. Strong correlations are found between parent galaxy luminosity and both the slope of the radial density profile for clusters and the width of the cluster color (metallicity) distribution. These correlations are in the sense that the most luminous early-type galaxies are embedded in cluster systems that have the shallowest radial gradients and exhibit the broadest color distributions. The data suggest a scenario in which luminous early-type galaxies have a more complex evolutionary history than fainter ones. A problem with the interpretation of the present data is that it is difficult (or impossible) to disentangle the strongly correlated effects of high parent galaxy luminosity, presence of a core or boxy isophotes, and shallow radial cluster density gradients.Comment: Contains complete Table 1 which had been truncated. To appear in the Astrophysical Journal. Also available at http://www.hia.nrc.ca/eprints.htm

    K-T impact(s): Continental, oceanic or both

    Get PDF
    Although geochemical and mineralogical evidence indicate that a major accretionary event occurred at the K-T boundary, no impact crater of suitable size and age was recognized. The 35 km Manson Structure, Iowa, was suggested recently as a possibility and Ar-40/Ar-39 determinations indicate that its formation age is indistinguishable from that of the K-T boundary. In order to test a possible association between Manson and the K-T boundary clay, the geochemistry and mineralogy of the K-T boundary clays at the Scollard Canyon section, Alberta and the Starkville South section, Colorado are compared with three dominant lithologies affected by the Manson impact: Proterozoic red clastics, underlying late-state granites, and gneisses. The chemical and mineralogical makeup of the Scollard Canyon boundary clay and its clastic constituents are presented, commenting on the implications for impact models. An impact into crystalline material of continental affinity appears to be required to explain the mineralogy and chemistry of the Scollard Canyon (and other Western N. American K-T sections). The low REE abundances of some K-T boundary layers are unusual but perhaps attempts should be made to understand the contributions of individual crustal components (e.g., carbonates, arkoses) as well as the potential for alteration involving these and other elements during and after impact-induced vaporization, before mantle excavation is invoked. If further studies confirm the results of published studies of marine boundary clays that indicate an oceanic target, attention must be paid to the possibility that multiple impacts occurred at the K-T boundary - one or more on the continents and one or more in the ocean

    Flexible Emergent Vegetation in Staggered Configuration as Bioshields

    Get PDF
    Source: ICHE Conference Archive - https://mdi-de.baw.de/icheArchiv

    Modeling the dynamical evolution of the M87 globular cluster system

    Full text link
    We study the dynamical evolution of the M87 globular cluster system (GCS) with a number of numerical simulations. We explore a range of different initial conditions for the GCS mass function (GCMF), for the GCS spatial distribution and for the GCS velocity distribution. We confirm that an initial power-law GCMF like that observed in young cluster systems can be readily transformed through dynamical processes into a bell-shaped GCMF. However,only models with initial velocity distributions characterized by a strong radial anisotropy increasing with the galactocentric distance are able to reproduce the observed constancy of the GCMF at all radii.We show that such strongly radial orbital distributions are inconsistent with the observed kinematics of the M87 GCS. The evolution of models with a bell-shaped GCMF with a turnover similar to that currently observed in old GCS is also investigated. We show that models with this initial GCMF can satisfy all the observational constraints currently available on the GCS spatial distribution,the GCS velocity distribution and on the GCMF properties.In particular these models successfully reproduce both the lack of a radial gradient of the GCS mean mass recently found in an analysis of HST images of M87 at multiple locations, and the observed kinematics of the M87 GCS.Our simulations also show that evolutionary processes significantly affect the initial GCS properties by leading to the disruption of many clusters and changing the masses of those which survive.The preferential disruption of inner clusters flattens the initial GCS number density profile and it can explain the rising specific frequency with radius; we show that the inner flattening observed in the M87 GCS spatial distribution can be the result of the effects of dynamical evolution on an initially steep density profile. (abridged)Comment: 15 pages,14 figures;accepted for publication in The Astrophysical Journa
    corecore