2,557 research outputs found

    Determining the galactic mass distribution using tidal streams from globular clusters

    Get PDF
    We discuss how to use tidal streams from globular clusters to measure the mass distribution of the Milky Way. Recent proper motion determinations for globular clusters from plate measurements and Hipparcos astrometry provide several good candidates for Galactic mass determinations in the intermediate halo, far above the Galactic disk, including Pal 5, NGC 4147, NGC 5024 (M53) and NGC 5466; the remaining Hipparcos clusters provide candidates for measurements several kpc above and below the disk. These clusters will help determine the profile and shape of the inner halo. To aid this effort, we present two methods of mass determination: one, a generalization of rotation-curve mass measurements, which gives the mass and potential from complete position-velocity observations for stream stars; and another using a simple chi^2 estimator, which can be used when only projected positions and radial velocities are known for stream stars. We illustrate the use of the latter method using simulated tidal streams from Pal 5 and find that fairly accurate mass determinations are possible even for relatively poor data sets. Follow-up observations of clusters with proper motion determinations may reveal tidal streams; obtaining radial velocity measurements would enable accurate measurements of the mass distribution in the inner Galaxy.Comment: 21 pages, 6 figures, published in A

    The growth of galaxies in cosmological simulations of structure formation

    Get PDF
    We use hydrodynamic simulations to examine how the baryonic components of galaxies are assembled, focusing on the relative importance of mergers and smooth accretion in the formation of ~L_* systems. In our primary simulation, which models a (50\hmpc)^3 comoving volume of a Lambda-dominated cold dark matter universe, the space density of objects at our (64-particle) baryon mass resolution threshold, M_c=5.4e10 M_sun, corresponds to that of observed galaxies with L~L_*/4. Galaxies above this threshold gain most of their mass by accretion rather than by mergers. At the redshift of peak mass growth, z~2, accretion dominates over merging by about 4:1. The mean accretion rate per galaxy declines from ~40 M_sun/yr at z=2 to ~10 M_sun/yr at z=0, while the merging rate peaks later (z~1) and declines more slowly, so by z=0 the ratio is about 2:1. We cannot distinguish truly smooth accretion from merging with objects below our mass resolution threshold, but extrapolating our measured mass spectrum of merging objects, dP/dM ~ M^a with a ~ -1, implies that sub-resolution mergers would add relatively little mass. The global star formation history in these simulations tracks the mass accretion rate rather than the merger rate. At low redshift, destruction of galaxies by mergers is approximately balanced by the growth of new systems, so the comoving space density of resolved galaxies stays nearly constant despite significant mass evolution at the galaxy-by-galaxy level. The predicted merger rate at z<~1 agrees with recent estimates from close pairs in the CFRS and CNOC2 redshift surveys.Comment: Submitted to ApJ, 35 pp including 15 fig

    Effect of the Milky Way on Magellanic Cloud structure

    Get PDF
    A combination of analytic models and n-body simulations implies that the structural evolution of the Large Magellanic Cloud (LMC) is dominated by its dynamical interaction with the Milky Way. Although expected at some level, the scope of the involvement has significant observational consequences. First, LMC disk orbits are torqued out of the disk plane, thickening the disk and populating a spheroid. The torque results from direct forcing by the Milky Way tide and, indirectly, from the drag between the LMC disk and its halo resulting from the induced precession of the LMC disk. The latter is a newly reported mechanism that can affect all satellite interations. However, the overall torque can not isotropize the stellar orbits and their kinematics remains disk-like. Such a kinematic signature is observed for nearly all LMC populations. The extended disk distribution is predicted to increase the microlensing toward the LMC. Second, the disk's binding energy slowly decreases during this process, puffing up and priming the outer regions for subsequent tidal stripping. Because the tidally stripped debris will be spatially extended, the distribution of stripped stars is much more extended than the HI Magellanic Stream. This is consistent with upper limits to stellar densities in the gas stream and suggests a different strategy for detecting the stripped stars. And, finally, the mass loss over several LMC orbits is predicted by n-body simulation and the debris extends to tens of kiloparsecs from the tidal boundary. Although the overall space density of the stripped stars is low, possible existence of such intervening populations have been recently reported and may be detectable using 2MASS.Comment: 15 pages, color Postscript figures, uses emulateapj.sty. Also available from http://www-astro.phast.umass.edu/~weinberg/weinberg-pubs.htm

    Globular Cluster Evolution in M87 and Fundamental Plane Ellipticals

    Get PDF
    The globular cluster population in M87 has decreased measurably through dynamical evolution caused by relaxation, binary heating and time-dependent tidal perturbation. For fundamental plane ellipticals in general, cluster populations evolve more rapidly in smaller galaxies because of the higher mass density. A simple evolutionary model reproduces the observed trend in specific frequency with luminosity for an initially constant relationship. Fits of theoretically evolved populations to M87 cluster data from McLaughlin et al. (1994) show the following: 1) dynamical effects drive evolution in the initial mass and space distributions and can account for the large core in the spatial profile as well as producing radial-dependence in the mass spectrum; 2) evolution reduces S_N by 50% within 16 kpc and 35% within 50 kpc, implying that S_N was initially 26 in this region. We estimate that 15% of the `missing' clusters lie below the detection threshold with mass less than 10^5 M_sun.Comment: Small but important typo. p.3, Table 2: M^{-\alpha+Kr} should read M^{-(\alpha+Kr)} in both instances. Otherwise identical. Latex, 9 pages, 9 figures, mn.sty included. HTML version at http://decoy.phast.umass.edu/preprints/m87/m87.html (Requires Netscape 1.1 or better

    The Effect of the Galactic Spheroid on Globular Cluster Evolution

    Get PDF
    We study the combined effects of relaxation, tidal heating and binary heating on globular cluster evolution, exploring the physical consequences of external effects and examining evolutionary trends in the Milky Way population. Our analysis demonstrates that heating on circular and low-eccentricity orbits can dominate cluster evolution. The results also predict rapid evolution on eccentric orbits either due to strong relaxation caused by the high densities needed for tidal limitation or due to efficient bulge shocking of low density clusters. The combination of effects leads to strong evolution of the population as a whole. For example, within the solar circle, tidally-limited 10^5 M_sun clusters lose at least 40% of their mass in 10 Gyr. At high eccentricity most of these clusters evaporate completely. Bulge shocking disrupts clusters within 40 kpc which have less than 80% of their mass within their pericentric inner Lagrange point. Our results are consistent with suggestions that the shape of the cluster luminosity function results from evaporation and disruption of low mass clusters; they further predict that the net velocity dispersion of the cluster system in the inner Galaxy has decreased with time. Preliminary constraints on formation models are also discussed. We conclude that the observed cluster system has largely been shaped by dynamical selection.Comment: Latex, 17 pages, 16 figures, mn.st
    • …
    corecore