1,635 research outputs found

    Aharonov-Bohm Exciton Absorption Splitting in Chiral Specific Single-Walled Carbon Nanotubes in Magnetic Fields of up to 78 T

    Full text link
    The Ajiki-Ando (A-A) splitting of single-walled carbon nanotubes(SWNT) originating from the Aharanov-Bohm effect was observed in chiral specific SWNTs by the magneto-absorption measurements conducted at magnetic fields of up to 78 T. The absorption spectra from each chirality showed clear A-A splitting of the E11E_{11} optical excitonic transitions. The parameters of both the dark-bright exciton energy splitting and the rate of A-A splitting in a magnetic field were determined for the first time from the well-resolved absorption spectra.Comment: 5 pages, 3 figure

    Comparative study of flux pinning, creep and critical currents between YBaCuO crystals with and without Y2BaCuO5 inclusions

    Get PDF
    In the Y-Ba-Cu-O system, YBa2Cu3O(x) phase is produced by the following peritectic reaction: Y2BaCuO5 + liquid yields 2YBa2Cu3O(x). Through the control of processing conditions and starting compositions, it becomes possible to fabricate large crystals containing fine Y2BaCuO5(211) inclusions. Such crystals exhibit Jc values exceeding 10000 A/sq cm at 77 K and 1T. Recently, researchers developed a novel process which can control the volume fraction of 211 inclusions. Elimination of 211 inclusions is also possible. In this study, researchers prepared YBaCuO crystals with and without 211 inclusions using the novel process, and compared flux pinning, flux creep and critical currents. Magnetic field dependence of Jc for YBaCuO crystals with and with 211 inclusions is shown. It is clear that fine 211 inclusions can contribute to flux pinning. It was also found that flux creep rate could be reduced by increasing flux pinning force. Critical current density estimates based on the conventional flux pinning theory were in good agreement with experimental results

    Genesis Potential Index

    Get PDF

    Correlation, Breit and Quantum Electrodynamics effects on energy level and transition properties of W54+^{54+} ion

    Full text link
    The electron correlation effects and Breit interaction as well as Quantum Electro-Dynamics (QED) effects were expected to have important contribution to the energy level and transition properties of heavy highly charged ions. The ground states [Ne]3s23p63d23s^{2}3p^{6}3d^{2} and first excited states [Ne]3s23p53d3^{2}3p^{5}3d^{3} of W54+^{54+} ion have been studied by using Multi-Configuration Dirac-Fock method with the implementation of Grasp2K package. A restricted active space was employed to investigate the correlation contribution from different models. The Breit interaction and QED effects were taken into account in the relativistic configuration interaction calculation with the converged wavefunction. It is found that the correlation contribution from 3s and 3p orbital have important contribution to the energy level, transition wavelength and probability of the ground and the first excited state of W54+^{54+} ion
    corecore