2,935 research outputs found

    The evolution of energy in flow driven by rising bubbles

    Get PDF
    We investigate by direct numerical simulations the flow that rising bubbles cause in an originally quiescent fluid. We employ the Eulerian-Lagrangian method with two-way coupling and periodic boundary conditions. In order to be able to treat up to 288000 bubbles, the following approximations and simplifications had to be introduced: (i) The bubbles were treated as point-particles, thus (ii) disregarding the near-field interactions among them, and (iii) effective force models for the lift and the drag forces were used. In particular, the lift coefficient was assumed to be 1/2, independent of the bubble Reynolds number and the local flow field. The results suggest that large scale motions are generated, owing to an inverse energy cascade from the small to the large scales. However, as the Taylor-Reynolds number is only in the range of 1, the corresponding scaling of the energy spectrum with an exponent of -5/3 cannot develop over a pronounced range. In the long term, the property of local energy transfer, characteristic of real turbulence, is lost and the input of energy equals the viscous dissipation at all scales. Due to the lack of strong vortices the bubbles spread rather uniformly in the flow. The mechanism for uniform spreading is as follows: Rising bubbles induce a velocity field behind them that acts on the following bubbles. Owing to the shear, those bubbles experience a lift force which make them spread to the left or right, thus preventing the formation of vertical bubble clusters and therefore of efficient forcing. Indeed, when the lift is artifically put to zero in the simulations, the flow is forced much more efficiently and a more pronounced energy accumulates at large scales is achieved.Comment: 9 pages, 7 figure

    On ideals with the Rees property

    Full text link
    A homogeneous ideal II of a polynomial ring SS is said to have the Rees property if, for any homogeneous ideal J⊂SJ \subset S which contains II, the number of generators of JJ is smaller than or equal to that of II. A homogeneous ideal I⊂SI \subset S is said to be m\mathfrak m-full if mI:y=I\mathfrak mI:y=I for some y∈my \in \mathfrak m, where m\mathfrak m is the graded maximal ideal of SS. It was proved by one of the authors that m\mathfrak m-full ideals have the Rees property and that the converse holds in a polynomial ring with two variables. In this note, we give examples of ideals which have the Rees property but are not m\mathfrak m-full in a polynomial ring with more than two variables. To prove this result, we also show that every Artinian monomial almost complete intersection in three variables has the Sperner property.Comment: 8 page

    Lateness Gene Concerning Photosensitivity Increases Yield, by Applying Low to High Levels of Fertilization, in Rice, a Preliminary Report

    Full text link
    Various genes controlling heading time have been reported in rice. An isogenic-line pair of late and early lines “L” and “E” were developed from progenies of the F1 of Suweon 258 × an isogenic line of IR36 carrying Ur1 gene. The lateness gene for photosensitivity that causes the difference between L and E was tentatively designated as “Ex(t)”, although it's chromosomal location is unknown. The present study was conducted to examine the effects of Ex(t) on yield and related traits in a paddy field in two years. Chemical fertilizers containing N, P2O5 and K2O were applied at the nitrogen levels of 4.00, 9.00 and 18.00 g/m2 in total, being denoted by "N4", "N9" and "N18", respectively, in 2014. L was later in 80%-heading by 18 or 19 days than E. Regarding total brown rice yield (g/m2), L and E were 635 and 577, 606 and 548, and 590 and 501, respectively, at N18, N9 and N4, indicating that Ex(t) increased this trait by 10 to 18%. Ex(t) increased yield of brown rice with thickness above 1.5mm (g/m2), by 9 to 15%. Ex(t) increased spikelet number per panicle by 16 to 22% and spikelet number per m2 by 11 to 18%. Thousand-grain weight (g) was 2 to 4% lower in L than in E. L was not significantly different from E in ripened-grain percentage. Hence, Ex(t) increased yield by increasing spikelet number per panicle. It is suggested that Ex(t) could be utilized to develop high yielding varieties for warmer districts of the temperate zone

    Effect of the Milky Way on Magellanic Cloud structure

    Get PDF
    A combination of analytic models and n-body simulations implies that the structural evolution of the Large Magellanic Cloud (LMC) is dominated by its dynamical interaction with the Milky Way. Although expected at some level, the scope of the involvement has significant observational consequences. First, LMC disk orbits are torqued out of the disk plane, thickening the disk and populating a spheroid. The torque results from direct forcing by the Milky Way tide and, indirectly, from the drag between the LMC disk and its halo resulting from the induced precession of the LMC disk. The latter is a newly reported mechanism that can affect all satellite interations. However, the overall torque can not isotropize the stellar orbits and their kinematics remains disk-like. Such a kinematic signature is observed for nearly all LMC populations. The extended disk distribution is predicted to increase the microlensing toward the LMC. Second, the disk's binding energy slowly decreases during this process, puffing up and priming the outer regions for subsequent tidal stripping. Because the tidally stripped debris will be spatially extended, the distribution of stripped stars is much more extended than the HI Magellanic Stream. This is consistent with upper limits to stellar densities in the gas stream and suggests a different strategy for detecting the stripped stars. And, finally, the mass loss over several LMC orbits is predicted by n-body simulation and the debris extends to tens of kiloparsecs from the tidal boundary. Although the overall space density of the stripped stars is low, possible existence of such intervening populations have been recently reported and may be detectable using 2MASS.Comment: 15 pages, color Postscript figures, uses emulateapj.sty. Also available from http://www-astro.phast.umass.edu/~weinberg/weinberg-pubs.htm

    Production of Milky Way structure by the Magellanic Clouds

    Get PDF
    Previous attempts at disturbing the galactic disk by the Magellanic Clouds relied on direct tidal forcing. However, by allowing the halo to actively respond rather than remain a rigid contributor to the rotation curve, the Clouds may produce a wake in the halo which then distorts the disk. Recent work reported here suggests that the Magellanic Clouds use this mechanism to produce disk distortions sufficient to account for both the radial location, position angle and sign of the HI warp and observed anomalies in stellar kinematics towards the galactic anticenter and LSR motion.Comment: 8 pages, uuencoded compressed PostScript, no figures, html version with figures and mpeg simulations available at http://www-astro.phast.umass.edu/Preprints/martin/martin1/lmc_online.htm

    Towards Understanding Political Interactions on Instagram

    Get PDF
    Online Social Networks (OSNs) allow personalities and companies to communicate directly with the public, bypassing filters of traditional medias. As people rely on OSNs to stay up-to-date, the political debate has moved online too. We witness the sudden explosion of harsh political debates and the dissemination of rumours in OSNs. Identifying such behaviour requires a deep understanding on how people interact via OSNs during political debates. We present a preliminary study of interactions in a popular OSN, namely Instagram. We take Italy as a case study in the period before the 2019 European Elections. We observe the activity of top Italian Instagram profiles in different categories: politics, music, sport and show. We record their posts for more than two months, tracking "likes" and comments from users. Results suggest that profiles of politicians attract markedly different interactions than other categories. People tend to comment more, with longer comments, debating for longer time, with a large number of replies, most of which are not explicitly solicited. Moreover, comments tend to come from a small group of very active users. Finally, we witness substantial differences when comparing profiles of different parties.Comment: 5 pages, 8 figure

    Active Microtremor Isolation System

    Get PDF
    • 

    corecore