2,935 research outputs found
The evolution of energy in flow driven by rising bubbles
We investigate by direct numerical simulations the flow that rising bubbles
cause in an originally quiescent fluid. We employ the Eulerian-Lagrangian
method with two-way coupling and periodic boundary conditions. In order to be
able to treat up to 288000 bubbles, the following approximations and
simplifications had to be introduced: (i) The bubbles were treated as
point-particles, thus (ii) disregarding the near-field interactions among them,
and (iii) effective force models for the lift and the drag forces were used. In
particular, the lift coefficient was assumed to be 1/2, independent of the
bubble Reynolds number and the local flow field. The results suggest that large
scale motions are generated, owing to an inverse energy cascade from the small
to the large scales. However, as the Taylor-Reynolds number is only in the
range of 1, the corresponding scaling of the energy spectrum with an exponent
of -5/3 cannot develop over a pronounced range. In the long term, the property
of local energy transfer, characteristic of real turbulence, is lost and the
input of energy equals the viscous dissipation at all scales. Due to the lack
of strong vortices the bubbles spread rather uniformly in the flow. The
mechanism for uniform spreading is as follows: Rising bubbles induce a velocity
field behind them that acts on the following bubbles. Owing to the shear, those
bubbles experience a lift force which make them spread to the left or right,
thus preventing the formation of vertical bubble clusters and therefore of
efficient forcing. Indeed, when the lift is artifically put to zero in the
simulations, the flow is forced much more efficiently and a more pronounced
energy accumulates at large scales is achieved.Comment: 9 pages, 7 figure
On ideals with the Rees property
A homogeneous ideal of a polynomial ring is said to have the Rees
property if, for any homogeneous ideal which contains , the
number of generators of is smaller than or equal to that of . A
homogeneous ideal is said to be -full if for some , where is the graded maximal
ideal of . It was proved by one of the authors that -full
ideals have the Rees property and that the converse holds in a polynomial ring
with two variables. In this note, we give examples of ideals which have the
Rees property but are not -full in a polynomial ring with more
than two variables. To prove this result, we also show that every Artinian
monomial almost complete intersection in three variables has the Sperner
property.Comment: 8 page
Lateness Gene Concerning Photosensitivity Increases Yield, by Applying Low to High Levels of Fertilization, in Rice, a Preliminary Report
Various genes controlling heading time have been reported in rice. An isogenic-line pair of late and early lines âLâ and âEâ were developed from progenies of the F1 of Suweon 258 Ă an isogenic line of IR36 carrying Ur1 gene. The lateness gene for photosensitivity that causes the difference between L and E was tentatively designated as âEx(t)â, although it's chromosomal location is unknown. The present study was conducted to examine the effects of Ex(t) on yield and related traits in a paddy field in two years. Chemical fertilizers containing N, P2O5 and K2O were applied at the nitrogen levels of 4.00, 9.00 and 18.00 g/m2 in total, being denoted by "N4", "N9" and "N18", respectively, in 2014. L was later in 80%-heading by 18 or 19 days than E. Regarding total brown rice yield (g/m2), L and E were 635 and 577, 606 and 548, and 590 and 501, respectively, at N18, N9 and N4, indicating that Ex(t) increased this trait by 10 to 18%. Ex(t) increased yield of brown rice with thickness above 1.5mm (g/m2), by 9 to 15%. Ex(t) increased spikelet number per panicle by 16 to 22% and spikelet number per m2 by 11 to 18%. Thousand-grain weight (g) was 2 to 4% lower in L than in E. L was not significantly different from E in ripened-grain percentage. Hence, Ex(t) increased yield by increasing spikelet number per panicle. It is suggested that Ex(t) could be utilized to develop high yielding varieties for warmer districts of the temperate zone
Effect of the Milky Way on Magellanic Cloud structure
A combination of analytic models and n-body simulations implies that the
structural evolution of the Large Magellanic Cloud (LMC) is dominated by its
dynamical interaction with the Milky Way. Although expected at some level, the
scope of the involvement has significant observational consequences. First, LMC
disk orbits are torqued out of the disk plane, thickening the disk and
populating a spheroid. The torque results from direct forcing by the Milky Way
tide and, indirectly, from the drag between the LMC disk and its halo resulting
from the induced precession of the LMC disk. The latter is a newly reported
mechanism that can affect all satellite interations. However, the overall
torque can not isotropize the stellar orbits and their kinematics remains
disk-like. Such a kinematic signature is observed for nearly all LMC
populations. The extended disk distribution is predicted to increase the
microlensing toward the LMC. Second, the disk's binding energy slowly decreases
during this process, puffing up and priming the outer regions for subsequent
tidal stripping. Because the tidally stripped debris will be spatially
extended, the distribution of stripped stars is much more extended than the HI
Magellanic Stream. This is consistent with upper limits to stellar densities in
the gas stream and suggests a different strategy for detecting the stripped
stars. And, finally, the mass loss over several LMC orbits is predicted by
n-body simulation and the debris extends to tens of kiloparsecs from the tidal
boundary. Although the overall space density of the stripped stars is low,
possible existence of such intervening populations have been recently reported
and may be detectable using 2MASS.Comment: 15 pages, color Postscript figures, uses emulateapj.sty. Also
available from http://www-astro.phast.umass.edu/~weinberg/weinberg-pubs.htm
Production of Milky Way structure by the Magellanic Clouds
Previous attempts at disturbing the galactic disk by the Magellanic Clouds
relied on direct tidal forcing. However, by allowing the halo to actively
respond rather than remain a rigid contributor to the rotation curve, the
Clouds may produce a wake in the halo which then distorts the disk. Recent work
reported here suggests that the Magellanic Clouds use this mechanism to produce
disk distortions sufficient to account for both the radial location, position
angle and sign of the HI warp and observed anomalies in stellar kinematics
towards the galactic anticenter and LSR motion.Comment: 8 pages, uuencoded compressed PostScript, no figures, html version
with figures and mpeg simulations available at
http://www-astro.phast.umass.edu/Preprints/martin/martin1/lmc_online.htm
Towards Understanding Political Interactions on Instagram
Online Social Networks (OSNs) allow personalities and companies to
communicate directly with the public, bypassing filters of traditional medias.
As people rely on OSNs to stay up-to-date, the political debate has moved
online too. We witness the sudden explosion of harsh political debates and the
dissemination of rumours in OSNs. Identifying such behaviour requires a deep
understanding on how people interact via OSNs during political debates. We
present a preliminary study of interactions in a popular OSN, namely Instagram.
We take Italy as a case study in the period before the 2019 European Elections.
We observe the activity of top Italian Instagram profiles in different
categories: politics, music, sport and show. We record their posts for more
than two months, tracking "likes" and comments from users. Results suggest that
profiles of politicians attract markedly different interactions than other
categories. People tend to comment more, with longer comments, debating for
longer time, with a large number of replies, most of which are not explicitly
solicited. Moreover, comments tend to come from a small group of very active
users. Finally, we witness substantial differences when comparing profiles of
different parties.Comment: 5 pages, 8 figure
- âŠ