2,640 research outputs found
The evolution of energy in flow driven by rising bubbles
We investigate by direct numerical simulations the flow that rising bubbles
cause in an originally quiescent fluid. We employ the Eulerian-Lagrangian
method with two-way coupling and periodic boundary conditions. In order to be
able to treat up to 288000 bubbles, the following approximations and
simplifications had to be introduced: (i) The bubbles were treated as
point-particles, thus (ii) disregarding the near-field interactions among them,
and (iii) effective force models for the lift and the drag forces were used. In
particular, the lift coefficient was assumed to be 1/2, independent of the
bubble Reynolds number and the local flow field. The results suggest that large
scale motions are generated, owing to an inverse energy cascade from the small
to the large scales. However, as the Taylor-Reynolds number is only in the
range of 1, the corresponding scaling of the energy spectrum with an exponent
of -5/3 cannot develop over a pronounced range. In the long term, the property
of local energy transfer, characteristic of real turbulence, is lost and the
input of energy equals the viscous dissipation at all scales. Due to the lack
of strong vortices the bubbles spread rather uniformly in the flow. The
mechanism for uniform spreading is as follows: Rising bubbles induce a velocity
field behind them that acts on the following bubbles. Owing to the shear, those
bubbles experience a lift force which make them spread to the left or right,
thus preventing the formation of vertical bubble clusters and therefore of
efficient forcing. Indeed, when the lift is artifically put to zero in the
simulations, the flow is forced much more efficiently and a more pronounced
energy accumulates at large scales is achieved.Comment: 9 pages, 7 figure
Crustal structure beneath the Trondelag Platform and adjacent areas of the Mid-Norwegian margin, as derived from wide-angle seismic and potential field data
The outer mid-Norwegian margin is characterized by strong breakup magmatism and has been extensively surveyed. The crustal structure of the inner continental shelf, however, is less studied, and its relation to the onshore geology, Caledonian structuring, and breakup magmatism remains unclear. Two Ocean Bottom Seismometer profiles were acquired across the Trøndelag Platform in 2003, as part of the Euromargins program. Additional-land stations recorded the marine shots. The P-wave data were modeled by ray-tracing, supported by gravity modeling. Older multi-channel seismic data allowed for interpretation of stratigraphy down to the top of the Triassic. Crystalline basement velocity is ~6 km s-1 onshore. Top basement is difficult to identify offshore, as velocities (5.3-5.7 km s-1) intermediate between typical crystalline crust and Mesozoic sedimentary strata appear 50-80 km from the coast. This layer thickens towards the Klakk-Ytreholmen Fault Complex and predates Permian and later structur-ing.
The velocities indicate sedimentary rocks, most likely Devonian. Onshore late- to post-Caledonian detachments have been proposed to extend offshore, based on the magnetic anomaly pattern. We do not find the expected correlation between upper basement velocity structure and detachments.
However, there is a distinct, dome-shaped lower-crustal body with a velocity of 6.6-7.0 km s-1. This is thickest under the Froan Basin, and the broad magnetic anomaly used to delineate the detachments correlates with this. The proposed offshore continuation of the detachments thus
appears- unreliable. While we find indications of high density and velocity (~7.2 km s-1) lower crust under the Rås Basin, similar to the proposed igneous underplating of the outer margin, this is poorly constrained near the end of our profiles. The gravity field indicates that this body may be continuous from the pre-breakup basement structures of the Utgard High to the Frøya High, suggesting that it could be an island arc or oceanic terrane-accreted during the Caledonian orogeny. Thus, we find no clear evidence of early Cenozoic igneous underplating of the inner part of the shelf
Stanley's conjecture for critical ideals
Let S=K[x_1,x_2,...,x_n] be a polynomial ring in n variables over a field K.
Stanley's conjecture holds for the modules I and S/I, when I is a critical
monomial ideal. We calculate the Stanley depth of S/I when I is a canonical
critical monomial ideal. For non critical monomial ideals we show the existence
of a Stanley ideal with the same depth and Hilbert function.Comment: 5 page
WHAM Observations of H-alpha Emission from High Velocity Clouds in the M, A, and C Complexes
The first observations of the recently completed Wisconsin H-Alpha Mapper
(WHAM) facility include a study of emission lines from high velocity clouds in
the M, A, and C complexes, with most of the observations on the M I cloud. We
present results including clear detections of H-alpha emission from all three
complexes with intensities ranging from 0.06 R to 0.20 R. In every observed
direction where there is significant high velocity H I gas seen in the 21 cm
line we have found associated ionized hydrogen emitting the H-alpha line. The
velocities of the H-alpha and 21 cm emission are well correlated in every case
except one, but the intensities are not correlated. There is some evidence that
the ionized gas producing the H-alpha emission envelopes the 21 cm emitting
neutral gas but the H-alpha "halo", if present, is not large. If the H-alpha
emission arises from the photoionization of the H I clouds, then the implied
Lyman continuum flux F_{LC} at the location of the clouds ranges from 1.3 to
4.2 x 10^5 photons cm^{-2} s^{-1}. If, on the other hand, the ionization is due
to a shock arising from the collision of the high-velocity gas with an ambient
medium in the halo, then the density of the pre-shocked gas can be constrained.
We have also detected the [S II] 6716 angstrom line from the M I cloud and have
evidence that the [S II] to H-alpha ratio varies with location on the cloud.Comment: 32 pages, 18 figures, to appear in ApJ (Sept. 10, 1998
Distributed Simultaneous Localisation and Auto-Calibration using Gaussian Belief Propagation
We present a novel scalable, fully distributed, and online method for
simultaneous localisation and extrinsic calibration for multi-robot setups.
Individual a priori unknown robot poses are probabilistically inferred as
robots sense each other while simultaneously calibrating their sensors and
markers extrinsic using Gaussian Belief Propagation. In the presented
experiments, we show how our method not only yields accurate robot localisation
and auto-calibration but also is able to perform under challenging
circumstances such as highly noisy measurements, significant communication
failures or limited communication range.Comment: Published in IEEE Robotics and Automation Letters (RA-L) 202
Tidal Streams as Probes of the Galactic Potential
We explore the use of tidal streams from Galactic satellites to recover the
potential of the Milky Way. Our study is motivated both by the discovery of the
first lengthy stellar stream in the halo (\cite{it98}) and by the prospect of
measuring proper motions of stars brighter than 20th magnitude in such a stream
with an accuracy of yr, as will be possible with the Space
Interferometry Mission (SIM). We assume that the heliocentric radial velocities
of these stars can be determined from supporting ground-based spectroscopic
surveys, and that the mass and phase-space coordinates of the Galactic
satellite with which they are associated will also be known to SIM accuracy.
Using results from numerical simulations as trial data sets, we find that, if
we assume the correct form for the Galactic potential, we can predict the
distances to the stars as a consequence of the narrow distribution of energy
expected along the streams. We develop an algorithm to evaluate the accuracy of
any adopted potential by requiring that the satellite and stars recombine
within a Galactic lifetime when their current phase-space coordinates are
integrated backwards. When applied to a four-dimensional grid of triaxial
logarithmic potentials, with varying circular velocities, axis ratios and
orientation of the major-axis in the disk plane, the algorithm can recover the
parameters used for the Milky Way in a simulated data set to within a few
percent using only 100 stars in a tidal stream.Comment: Revised version - original algorithm generalised to be applicable to
any potential shape. LaTeX, 12 pages including 3 figures. To be published in
ApJ Letter
Modulating the Properties of Azulene‐Containing Polymers through Controlled Incorporation of Regioisomers
Two libraries of random conjugated polymers are presented that incorporate varying ratios of regioisomeric azulene units connected via the 5‐membered or 7‐membered ring in combination with bithiophene or fluorene comonomers. It is demonstrated that the optoelectronic and stimuli‐responsive properties of the materials can be systematically modulated by tuning the relative percentage of each azulene building block in the polymer backbone. Significantly, these materials exhibit stimuli‐responsive behavior in the solid state with spin‐coated thin films undergoing rapid and reversible color switching. Ultimately, this work introduces a new design strategy in which the optoelectronic properties of conjugated polymers can be modulated by varying only the regiochemistry of the constituent building blocks along a polymer chain
A Robot Web for Distributed Many-Device Localisation
We show that a distributed network of robots or other devices which make
measurements of each other can collaborate to globally localise via efficient
ad-hoc peer to peer communication. Our Robot Web solution is based on Gaussian
Belief Propagation on the fundamental non-linear factor graph describing the
probabilistic structure of all of the observations robots make internally or of
each other, and is flexible for any type of robot, motion or sensor. We define
a simple and efficient communication protocol which can be implemented by the
publishing and reading of web pages or other asynchronous communication
technologies. We show in simulations with up to 1000 robots interacting in
arbitrary patterns that our solution convergently achieves global accuracy as
accurate as a centralised non-linear factor graph solver while operating with
high distributed efficiency of computation and communication. Via the use of
robust factors in GBP, our method is tolerant to a high percentage of faults in
sensor measurements or dropped communication packets.Comment: Published in IEEE Transactions on Robotics (TRO) 202
The Magellanic Stream and the density of coronal gas in the Galactic halo
The properties of the Magellanic Stream constrain the density of coronal gas
in the distant Galactic halo. We show that motion through ambient gas can
strongly heat Stream clouds, driving mass loss and causing evaporation. If the
ambient gas density is too high, then evaporation occurs on unreasonably short
timescales. Since heating dominates drag, tidal stripping appears to be
responsible for producing the Stream. Requiring the survival of the cloud MS IV
for 500 Myr sets an upper limit on the halo gas density n_H< 10^{-5} cm^{-3} at
50 kpc, roughly a factor of 10 lower than that estimated from the drag model of
Moore & Davis (1994). Implications for models of the evolution of gas in galaxy
halos are discussed.Comment: 4 pages, 1 figure, in press, ApJ
- …