12 research outputs found

    Conductance transition with interacting bosons in an Aharonov-Bohm cage

    Full text link
    We study transport of interacting bosons through an Aharonov-Bohm cage - a building block of flat band networks - with coherent pump and sink leads. In the absence of interactions the cage is insulating due to destructive interference. We find that the cage stays insulating up to a critical value of the pump strength in the presence of mean field interactions, while the quantum regime induces particle pair transport and weak conductance below the critical pump strength. A swift crossover from quantum into the classical regime upon further pump strength increase is observed. We solve the time dependent master equations for the density matrix of the many body problem both in the classical, pure quantum, and pseudoclassical regimes. We start with an empty cage and switch on driving. We characterize the transient dynamics, and the complexity of the resulting steady states and attractors. Our results can be readily realized using experimental platforms involving interacting ultracold atoms and photons on finetuned optical lattices.Comment: 5 pages, 4 figure

    Signatures of Quantum Chaos and fermionization in the incoherent transport of bosonic carriers in the Bose-Hubbard chain

    Full text link
    We analyse the stationary current of Bose particles across the Bose-Hubbard chain connected to a battery, focusing on the effect of inter-particle interactions. It is shown that the current magnitude drastically decreases as the strength of inter-particle interactions exceeds the critical value which marks the transition to quantum chaos in the Bose-Hubbard Hamiltonian. We found that this transition is well reflected in the non-equilibrium many-body density matrix of the system. Namely, the level-spacing distribution for eigenvalues of the density matrix changes from Poisson to Wigner-Dyson distributions. With the further increase of the interaction strength, the Wigner-Dyson spectrum statistics changes back to the Poisson statistics which now marks fermionization of the bosonic particles. With respect to the stationary current, this leads to the counter-intuitive dependence of the current magnitude on the particle number.Comment: 5 pages, 5 figure

    Current opportunities and prospectives of immunotropic therapy in chronic generalized periodontitis

    Get PDF
    Impairment of immunological reactivity in inflammatory periodontal diseases is well proven. To perform immunomodulatory treatment in domestic dental practice, various medications are used, including natural, chemically modified, recombinant, genetically engineered and synthetic substances, which differ in their effects upon innate and adaptive immune systems. Complex preparations of natural cytokines as well as genetically engineered preparations of IL-1, IL-2, growth factors, IFNα, IFNβ, IFNγ are applied in clinical settings. Clinical implementation of interferon and interferon inducers in combined therapy of generalized periodontitis is shown to increase resistance to viral components of the oral microbiota. Growth factors (platelet growth factor, fibroblast growth factor, endothelial growth factor, etc.) are successfully used for tissue regeneration in periodontics and maxillofacial surgery. Experimental studies have shown that local administration of toll-like receptor-9 and CD40 ligand may reduce periodontal ligature inflammation and bone loss in mice by inducing B-cell proliferation and increasing IL-10 mRNA expression. Promising results in development of new biologically active drugs are obtained with nanotechnology approaches, i.e., production of composite materials of metal nanoparticles with polymers, growth factors, and local application of these products. General limitations of all these growth factors include extremely short periods of biological activity, and adjusted duration of local effective concentrations. Therefore, it is important to develop a drug delivery system using appropriate scaffolding elements thus allowing local effects of the drug for a certain period of time. In experimental models, alginate hydrogels performed well upon local delivery of granulocyte-macrophage colony-stimulating factor and stromal lymphopoietin of the thymus. A new immunomodulatory strategy for alveolar bone regeneration targets macrophages. A biologically functionalized injectable microsphere of heparin-modified gelatin nanofibers that mimic the architecture of the natural bone extracellular matrix, and provide an osteoconductive microenvironment for bone cells includes IL-4, which has heparin-binding domains. These medications represent a component of a comprehensive treatment schedule, and should be evaluated for immune status before and after therapy. Thus, recent advances in studies of innate and acquired immune responses in inflammatory diseases and, in particular, in periodontal disorders, allows us to develop new approaches and methods of treatment in order to improve efficiency of complex therapy in the inflammatory periodontal diseases

    Frontal cephalometric landmarking: humans vs artificial neural networks

    No full text
    Frontal cephalometric radiography (frontal ceph) is one of the important diagnostic methods in orthodontics and maxillofacial surgery. It allows one to determine occlusion anomalies in the transverse and vertical planes and to evaluate the symmetry of the facial skeleton relative to the median plane, including analysis of the position of the jawbone. Aim: The aim of this study was to develop an artificial neural network (ANN) for placing cephalometric points (CPs) on frontal cephs and to compare the accuracy of its performance against humans. Materials and methods: The study included 330 depersonalized frontal cephs: 300 cephs for training ANNs and 30 for research. Each image was imported into the ViSurgery software (Skolkovo, Russia) and the 45 CPs were arranged. The CPs were divided into three groups: 1) precise anatomical landmarks; 2) complex anatomical landmarks; and 3) indistinct anatomical landmarks. Two ANNs were used to improve the accuracy of CP placement. The first ANN solved the problem of multiclass image segmentation, and the second regression ANN was used to correct the predictions of the first ANN. The accuracy of CP placement was compared between the ANN and three groups of doctors: expert, regular, and inexperienced. Then, using the Wilcoxon t test, the hypothesis that an ANN makes fewer or as many errors as doctors in the three groups of points was tested. Results: The deviation was estimated by the mean absolute error (MAE). The MAE for the points placed by the ANN, as compared with the control, was close to the average result for the regular doctor group: 2.87 mm (ANN) and 2.85 mm (regular group); 2.47 mm (expert group), and 3.61 mm (inexperienced group). The results for individual groups of points are presented. On average, the ANN places CPs no less accurately than the regular doctor group in each group of points. However, calculating all points in total, this hypothesis was rejected because the P value was 0.0056. A different result was observed among the inexperienced doctor group. Points from groups 2 and 3, as well as all points in total, were placed more accurately by the ANN (P = 0.9998, 0.2628, and 0.9982, respectively). The exception was group 1, where the points were more accurately placed by the inexperienced doctors (P = 0.0006). Conclusion: The results of the present study show that ANNs can achieve accuracy comparable to humans in placing CPs, and in some cases surpass the accuracy of inexperienced doctors (students, residents, graduate students)

    Poly(3-hydroxybutyrate) 3D-Scaffold–Conduit for Guided Tissue Sprouting

    No full text
    Scaffold biocompatibility remains an urgent problem in tissue engineering. An especially interesting problem is guided cell intergrowth and tissue sprouting using a porous scaffold with a special design. Two types of structures were obtained from poly(3-hydroxybutyrate) (PHB) using a salt leaching technique. In flat scaffolds (scaffold-1), one side was more porous (pore size 100–300 μm), while the other side was smoother (pore size 10–50 μm). Such scaffolds are suitable for the in vitro cultivation of rat mesenchymal stem cells and 3T3 fibroblasts, and, upon subcutaneous implantation to older rats, they cause moderate inflammation and the formation of a fibrous capsule. Scaffold-2s are homogeneous volumetric hard sponges (pore size 30–300 μm) with more structured pores. They were suitable for the in vitro culturing of 3T3 fibroblasts. Scaffold-2s were used to manufacture a conduit from the PHB/PHBV tube with scaffold-2 as a filler. The subcutaneous implantation of such conduits to older rats resulted in gradual soft connective tissue sprouting through the filler material of the scaffold-2 without any visible inflammatory processes. Thus, scaffold-2 can be used as a guide for connective tissue sprouting. The obtained data are advanced studies for reconstructive surgery and tissue engineering application for the elderly patients
    corecore