2,617 research outputs found

    Production of Strange Clusters and Strange Matter in Nucleus-Nucleus Collisions at the AGS

    Get PDF
    Production probabilities for strange clusters and strange matter in Au+Au collisions at AGS energy are obtained in the thermal fireball model. The only parameters of the model, the baryon chemical potential and temperature, were determined from a description of the rather complete set of hadron yields from Si+nucleus collisions at the AGS. For the production of light nuclear fragments and strange clusters the results are similar to recent coalescence model calculations. Strange matter production with baryon number larger than 10 is predicted to be much smaller than any current experimental sensitivities.Comment: 9 Pages (no figures

    Production of light nuclei, hypernuclei and their antiparticles in relativistic nuclear collisions

    Full text link
    We present, using the statistical model, an analysis of the production of light nuclei, hypernuclei and their antiparticles in central collisions of heavy nuclei. Based on these studies we provide predictions for the production yields of multiply-strange light nuclei.Comment: 9 pages, 6 figues; v2: final versions accepted for publication (Phys. Lett. B

    The thermal model on the verge of the ultimate test: particle production in Pb-Pb collisions at the LHC

    Full text link
    We investigate the production of hadrons in nuclear collisions within the framework of the thermal (or statistical hadronization) model. We discuss both the ligh-quark hadrons as well as charmonium and provide predictions for the LHC energy. Even as its exact magnitude is dependent on the charm production cross section, not yet measured in Pb-Pb collisions, we can confidently predict that at the LHC the nuclear modification factor of charmonium as a function of centrality is larger than that observed at RHIC and compare the experimental results to these predictions.Comment: 4 pages, 3 figures; proceedings of QM201

    Centrality and Energy Dependence of Proton, Light Fragment and Hyperon Production

    Get PDF
    Recent results of the NA49 collaboration are discussed. These include the energy dependence of stopping and the production of the light fragments t and 3He. New data on the system size dependence of hyperon production at 40A and 158AGeV are also presented.Comment: 4 pages, Quark Matter 2006 proceeding

    Statistical Model Predictions for Particle Ratios at sqrt(s_NN) = 5.5 TeV

    Full text link
    Particle production in central Pb-Pb collisions at LHC is discussed in the context of the Statistical Model. Predictions of various particle ratios are presented with the corresponding choice of model parameters made according to the systematics extracted from heavy-ion collisions at lower energies. The sensitivity of several ratios on the temperature and the baryon chemical potential is studied in detail, and some of them, which are particularly appropriate to determine the chemical freeze-out point experimentally, are indicated. We show that the anti-p / p ratio is most suitable to determine the baryon chemical potential while the Omega / K and Omega / pi ratios are best to determine the temperature at chemical freeze-out.Comment: Submitted to Phys. Rev. C, 7 pages, 4 figure

    Strange Particle Production from SIS to LHC

    Full text link
    >1A review of meson emission in heavy ion collisions at incident energies from SIS up to collider energies is presented. A statistical model assuming chemical equilibrium and local strangeness conservation (i.e. strangeness conservation per collision) explains most of the observed features. Emphasis is put onto the study of K+K^+ and KK^- emission at low incident energies. In the framework of this statistical model it is shown that the experimentally observed equality of K+K^+ and KK^- rates at ``threshold-corrected'' energies ssth\sqrt{s} - \sqrt{s_{th}} is due to a crossing of two excitation functions. Furthermore, the independence of the K+K^+ to KK^- ratio on the number of participating nucleons observed between SIS and RHIC is consistent with this model. It is demonstrated that the KK^- production at SIS energies occurs predominantly via strangeness exchange and this channel is approaching chemical equilibrium. The observed maximum in the K+/π+K^+/\pi^+ excitation function is also seen in the ratio of strange to non-strange particle production. The appearance of this maximum around 30 AA\cdotGeV is due to the energy dependence of the chemical freeze-out parameters TT and μB\mu_B.Comment: Presented at the International Workshop "On the Physics of the Quark-Gluon Plasma", Palaiseau, France, September 2001. 10 pages, 8 figure

    Heavy quark(onium) at LHC: the statistical hadronization case

    Full text link
    We discuss the production of charmonium in nuclear collisions within the framework of the statistical hadronization model. We demonstrate that the model reproduces very well the availble data at RHIC. We provide predictions for the LHC energy where, dependently on the charm production cross section, a dramatically different behaviour of charmonium production as a function of centrality might be expected. We discuss also the case in elementary collisions, where clearly the statistical model does not reproduce the measurements.Comment: 8 pages, 5 figures; proceeding of SQM09, Buzios, Brazil, to be published in J. Phys.

    Chemical Equilibrium in Collisions of Small Systems

    Get PDF
    The system-size dependence of particle production in heavy-ion collisions at the top SPS energy is analyzed in terms of the statistical model. A systematic comparison is made of two suppression mechanisms that quantify strange particle yields in ultra-relativistic heavy-ion collisions: the canonical model with strangeness correlation radius determined from the data and the model formulated in the canonical ensemble using chemical off-equilibrium strangeness suppression factor. The system-size dependence of the correlation radius and the thermal parameters are obtained for p-p, C-C, Si-Si and Pb-Pb collisions at sqrt(s_NN) = 17.3 AGeV. It is shown that on the basis of a consistent set of data there is no clear difference between the two suppression patterns. In the present study the strangeness correlation radius was found to exhibit a rather weak dependence on the system size.Comment: 9 pages, 8 figures, submitted to Physical Review

    Particle production in p-p collisions and prediction for LHC energy

    Full text link
    We analyze recent data on particle production yields obtained in p-p collisions at SPS and RHIC energies within the statistical model. We apply the model formulated in the canonical ensemble and focus on strange particle production. We introduce different methods to account for strangeness suppression effects and discuss their phenomenological verification. We show that at RHIC the midrapidity data on strange and multistrange particle multiplicity can be successfully described by the canonical statistical model with and without an extra suppression effects. On the other hand, SPS data integrated over the full phase-space require an additional strangeness suppression factor that is beyond the conventional canonical model. This factor is quantified by the strangeness saturation parameter or strangeness correlation volume. Extrapolating all relevant thermal parameters from SPS and RHIC to LHC energy we present predictions of the statistical model for particle yields in p-p collisions at sqrt(s) = 14TeV. We discuss the role and the influence of a strangeness correlation volume on particle production in p-p collisions at LHC.Comment: 6 pages, 6 figures, 4 tables, submitted to Phys. Rev.

    Strangeness in ultrarelativistic nucleus-nucleus collisions

    Get PDF
    I discuss strangeness production in nucleus-nucleus reactions at ultrarelativistic energies (up to 200 AGeV). In these reactions matter may be created with densities and temperatures in the transition region between quark-gluon plasma (QGP) and hadron gas. Strange anti-baryon enhancement at 200 AGeV and probably even more so at 10 AGeV signals importance of interactions beyond hadron gas dynamics. The systematics of strangeness production indicates that energy and baryon density are key variables while the size of the production volume plays no visible role. Analysis of strangeness appears useful to explore thermalization, flow and the post-equilibrium stage in ultrarelativistic nucleus-nucleus collisions.Comment: 13 pages LaTeX including 6 postscript figures; needs style files espcrc1,floatfig,epsfig. Invited talk presented at 6th International Conference on Nucleus-Nucleus Collisions at Gatlinburg, June 2-6, 1997. To be published in Proceedings in Nuclear Physics
    corecore