16 research outputs found

    Morphine induces preconditioning via activation of mitochondrial KCa channels

    Get PDF
    PURPOSE: Mitochondrial calcium sensitive potassium (mK(Ca)) channels are involved in cardioprotection induced by ischemic preconditioning. In the present study we investigated whether morphine-induced preconditioning also involves activation of mK(Ca) channels. METHODS: Isolated rat hearts (six groups; each n = 8) underwent global ischemia for 30 min followed by a 60-min reperfusion. Control animals were not further treated. Morphine preconditioning (MPC) was initiated by two five-minute cycles of morphine 1 muM infusion with one five-minute washout and one final ten-minute washout period before ischemia. The mK(Ca) blocker, paxilline 1 muM, was administered, with and without morphine administration (MPC + Pax and Pax). As a positive control, we added an ischemic preconditioning group (IPC) alone and combined with paxilline (IPC + Pax). At the end of reperfusion, infarct sizes were determined by triphenyltetrazoliumchloride staining. RESULTS: Infarct size was (mean +/- SD) 45 +/- 9% of the area at risk in the Control group. The infarct size was less in the morphine or ischemic preconditioning groups (MPC: 23 +/- 8%, IPC: 20 +/- 5%; each P < 0.05 vs Control). Infarct size reduction was abolished by paxilline (MPC + Pax: 37 +/- 7%, P < 0.05 vs MPC and IPC + Pax: 36 +/- 6%, P < 0.05 vs IPC), whereas paxilline alone had no effect (Pax: 46 +/- 7%, not significantly different from Control). CONCLUSION: Cardioprotection by morphine-induced preconditioning is mediated by activation of mK(Ca) channel

    Fumarate Reductase Activity Maintains an Energized Membrane in Anaerobic Mycobacterium tuberculosis

    Get PDF
    Oxygen depletion of Mycobacterium tuberculosis engages the DosR regulon that coordinates an overall down-regulation of metabolism while up-regulating specific genes involved in respiration and central metabolism. We have developed a chemostat model of M. tuberculosis where growth rate was a function of dissolved oxygen concentration to analyze metabolic adaptation to hypoxia. A drop in dissolved oxygen concentration from 50 mmHg to 0.42 mmHg led to a 2.3 fold decrease in intracellular ATP levels with an almost 70-fold increase in the ratio of NADH/NAD+. This suggests that re-oxidation of this co-factor becomes limiting in the absence of a terminal electron acceptor. Upon oxygen limitation genes involved in the reverse TCA cycle were upregulated and this upregulation was associated with a significant accumulation of succinate in the extracellular milieu. We confirmed that this succinate was produced by a reversal of the TCA cycle towards the non-oxidative direction with net CO2 incorporation by analysis of the isotopomers of secreted succinate after feeding stable isotope (13C) labeled precursors. This showed that the resulting succinate retained both carbons lost during oxidative operation of the TCA cycle. Metabolomic analyses of all glycolytic and TCA cycle intermediates from 13C-glucose fed cells under aerobic and anaerobic conditions showed a clear reversal of isotope labeling patterns accompanying the switch from normoxic to anoxic conditions. M. tuberculosis encodes three potential succinate-producing enzymes including a canonical fumarate reductase which was highly upregulated under hypoxia. Knockout of frd, however, failed to reduce succinate accumulation and gene expression studies revealed a compensatory upregulation of two homologous enzymes. These major realignments of central metabolism are consistent with a model of oxygen-induced stasis in which an energized membrane is maintained by coupling the reductive branch of the TCA cycle to succinate secretion. This fermentative process may offer unique targets for the treatment of latent tuberculosis

    Charybdotoxin and its effects on potassium channels

    No full text

    Knockout of Slc25a19 causes mitochondrial thiamine pyrophosphate depletion, embryonic lethality, CNS malformations, and anemia

    No full text
    SLC25A19 mutations cause Amish lethal microcephaly (MCPHA), which markedly retards brain development and leads to α-ketoglutaric aciduria. Previous data suggested that SLC25A19, also called DNC, is a mitochondrial deoxyribonucleotide transporter. We generated a knockout mouse model of Slc25a19. These animals had 100% prenatal lethality by embryonic day 12. Affected embryos at embryonic day 10.5 have a neural-tube closure defect with ruffling of the neural fold ridges, a yolk sac erythropoietic failure, and elevated α-ketoglutarate in the amniotic fluid. We found that these animals have normal mitochondrial ribo- and deoxyribonucleoside triphosphate levels, suggesting that transport of these molecules is not the primary role of SLC25A19. We identified thiamine pyrophosphate (ThPP) transport as a candidate function of SLC25A19 through homology searching and confirmed it by using transport assays of the recombinant reconstituted protein. The mitochondria of Slc25a19(−/−) and MCPHA cells have undetectable and markedly reduced ThPP content, respectively. The reduction of ThPP levels causes dysfunction of the α-ketoglutarate dehydrogenase complex, which explains the high levels of this organic acid in MCPHA and suggests that mitochondrial ThPP transport is important for CNS development
    corecore