911 research outputs found

    Screening of Neonatal UK Dried Blood Spots Using a Duplex SMN1 Screening Assay

    Get PDF
    Spinal muscular atrophy (SMA) is an autosomal inherited neuromuscular genetic disease caused, in 95% of cases, by homozygous deletions involving the SMN1 gene exon 7. It remains the leading cause of death in children under 2 years of age. New treatments have been developed and adopted for use in many countries, including the UK. Success of these treatments depends on early diagnosis and intervention in newborn babies, and many countries have implemented a newborn screening (NBS) or pilot NBS program to detect SMN1 exon 7 deletions on dried blood spots. In the UK, there is no current NBS program for SMA, and no pilot studies have commenced. For consideration of adoption of NBS for a new condition, numerous criteria must be satisfied, including critical assessment of a working methodology. This study uses a commercially available real-time PCR assay to simultaneously detect two different DNA segments (SMN1 exon 7 and control gene RPP30) using DNA extracted from a dried blood spot. This study was carried out in a routine clinical laboratory to determine the specificity, sensitivity, and feasibility of SMA screening in a UK NBS lab setting. Just under 5000 normal DBSs were used alongside 43 known SMA positive DBSs. Study results demonstrate that NBS for SMA using real-time PCR is feasible within the current UK NBS Laboratory infrastructure using the proposed algorithm

    Endogenous fatty acid ethanolamides suppress nicotine-induced activation of mesolimbic dopamine neurons through nuclear receptors.

    Get PDF
    Nicotine stimulates the activity of mesolimbic dopamine neurons, which is believed to mediate the rewarding and addictive properties of tobacco use. Accumulating evidence suggests that the endocannabinoid system might play a major role in neuronal mechanisms underlying the rewarding properties of drugs of abuse, including nicotine. Here, we investigated the modulation of nicotine effects by the endocannabinoid system on dopamine neurons in the ventral tegmental area with electrophysiological techniques in vivo and in vitro. We discovered that pharmacological inhibition of fatty acid amide hydrolase (FAAH), the enzyme that catabolizes fatty acid ethanolamides, among which the endocannabinoid anandamide (AEA) is the best known, suppressed nicotine-induced excitation of dopamine cells. Importantly, this effect was mimicked by the administration of the FAAH substrates oleoylethanolamide (OEA) and palmitoylethanolamide (PEA), but not methanandamide, the hydrolysis resistant analog of AEA. OEA and PEA are naturally occurring lipid signaling molecules structurally related to AEA, but devoid of affinity for cannabinoid receptors. They blocked the effects of nicotine by activation of the peroxisome proliferator-activated receptor-α (PPAR-α), a nuclear receptor transcription factor involved in several aspects of lipid metabolism and energy balance. Activation of PPAR-α triggered a nongenomic stimulation of tyrosine kinases, which might lead to phosphorylation and negative regulation of neuronal nicotinic acetylcholine receptors. These data indicate for the first time that the anorexic lipids OEA and PEA possess neuromodulatory properties as endogenous ligands of PPAR-α in the brain and provide a potential new target for the treatment of nicotine addictio

    Quantitative reduction of RyR1 protein caused by a single-allele frameshift mutation in RYR1 ex36 impairs the strength of adult skeletal muscle fibres

    Get PDF
    Here we characterized a mouse model knocked-in for a frameshift mutation in RYR1 exon 36 (p.Gln1970fsX16) that is isogenic to that identified in one parent of a severely affected patient with recessively inherited multiminicore disease. This individual carrying the RYR1 frameshifting mutation complained of mild muscle weakness and fatigability. Analysis of the RyR1 protein content in a muscle biopsy from this individual showed a content of only 20% of that present in a control individual. The biochemical and physiological characteristics of skeletal muscles from RyR1Q1970fsX16 heterozygous mice recapitulates that of the heterozygous parent. RyR1 protein content in the muscles of mutant mice reached 38% and 58% of that present in total muscle homogenates of fast and slow muscles from wild-type (WT) littermates. The decrease of RyR1 protein content in total homogenates is not accompanied by a decrease of Cav1.1 content, whereby the Cav1.1/RyR1 stoichiometry ratio in skeletal muscles from RyR1Q1970fsX16 heterozygous mice is lower compared to that from WT mice. Electron microscopy (EM) revealed a 36% reduction in the number/area of calcium release units accompanied by a 2.5-fold increase of dyads (triads that have lost one junctional sarcoplasmic reticulum element); both results suggest a reduction of the RyR1 arrays. Compared to WT, muscle strength and depolarization-induced calcium transients in RyR1Q1970fsX16 heterozygous mice muscles were decreased by 20% and 15%, respectively. The RyR1Q1970fsX16 mouse model provides mechanistic insight concerning the phenotype of the parent carrying the RYR1 ex36 mutation and suggests that in skeletal muscle fibres there is a functional reserve of RyR1

    Electromyography and muscle biopsy in paediatric neuromuscular disorders – Evaluation of current practice and literature review

    Get PDF
    The conduct and interpretation of electromyography in children is considered difficult and therefore often avoided. We assessed the diagnostic accuracy of the paediatric electromyography protocol used in our tertiary reference centre and compared it to muscle biopsy results and clinical diagnosis. Electromyography was performed in unsedated children with suspected neuromuscular diseases between January 2010 and September 2017 and was analysed quantitatively. Muscle pathology was classified into seven groups based on existing histopathology reports. The clinical diagnosis, including myopathic, neurogenic and non-neuromuscular categories was used as the gold standard. 171 children between the age of 12 days to 17.4 years were included in the analysis. 41 children (24%) were under the age of 2 years at the time of electromyography. 98 (57%) children were diagnosed with a myopathic disorder, 18 (11%) with a neurogenic disease and 55 (32%) as not having a primary neuromuscular disorder. In detecting myopathic disease, electromyography performed as well as muscle biopsy (sensitivity 87.8% for electromyography vs. 84.5% for muscle biopsy; specificity 75.7% vs. 86.4%). This also applied to children under the age of 2 years (sensitivity 81.8% vs. 86.4%). Quantitative analysis of a limited electromyography protocol performed in unsedated children is a very valuable diagnostic tool

    Regional long-term analysis of dietary isotopes in Neolithic southeastern Italy: new patterns and research directions

    Get PDF
    Isotopic analyses of prehistoric diet have only recently reached the threshold of going beyond site-focused reports to provide regional syntheses showing larger trends. In this work we present the first regional analysis for Neolithic southeastern Italy as a whole, including both substantial original data and a review of the available published data. The results show that dietary isotopes can shed new light on a number of traditional and important questions about Neolithic foodways. First, we observe regional variations in the distribution of stable isotope values across the area, suggesting variability in the Neolithic diet. Secondly, we show that, although the plant food calorific intake was primary for these communities, animal products were also important, representing on average 40% of the total calories. Third, we note that marine fish was only minorly consumed, but that this could be an underestimation, and we observe some variability in the regions considered, suggesting differences in local human-environment interactions. People in different regions of southeastern Italy may have consumed different versions of a common Neolithic diet. Regional synthesis also allows us to take stock of gaps and new directions in the field, suggesting an agenda for Neolithic isotopic research for the 2020s

    SIGMAR1 mutation associated with autosomal recessive Silver-like syndrome

    Get PDF
    OBJECTIVE: To describe the genetic and clinical features of a simplex patient with distal hereditary motor neuropathy (dHMN) and lower limb spasticity (Silver-like syndrome) due to a mutation in the sigma nonopioid intracellular receptor-1 gene (SIGMAR1) and review the phenotypic spectrum of mutations in this gene. METHODS: We used whole-exome sequencing to investigate the proband. The variants of interest were investigated for segregation in the family using Sanger sequencing. Subsequently, a larger cohort of 16 unrelated dHMN patients was specifically screened for SIGMAR1 mutations. RESULTS: In the proband, we identified a homozygous missense variant (c.194T>A, p.Leu65Gln) in exon 2 of SIGMAR1 as the probable causative mutation. Pathogenicity is supported by evolutionary conservation, in silico analyses, and the strong phenotypic similarities with previously reported cases carrying coding sequence mutations in SIGMAR1. No other mutations were identified in 16 additional patients with dHMN. CONCLUSIONS: We suggest that coding sequence mutations in SIGMAR1 present clinically with a combination of dHMN and pyramidal tract signs, with or without spasticity, in the lower limbs. Preferential involvement of extensor muscles of the upper limbs may be a distinctive feature of the disease. These observations should be confirmed in future studies

    Genotype-phenotype correlation in seven motor neuron disease families with novel ALS2 mutations

    Get PDF
    Autosomal-recessive mutations in the Alsin Rho guanine nucleotide exchange factor (ALS2) gene may cause specific subtypes of childhood-onset progressive neurodegenerative motor neuron diseases (MND). These diseases can manifest with a clinical continuum from infantile ascending hereditary spastic paraplegia (IAHSP) to juvenile-onset forms with or without lower motor neuron involvement, the juvenile primary lateral sclerosis (JPLS) and the juvenile amyotrophic lateral sclerosis (JALS). We report 11 patients from seven unrelated Turkish and Yemeni families with clinical signs of IAHSP or JPLS. We performed haplotype analysis or next-generation panel sequencing followed by Sanger Sequencing to unravel the genetic disease cause. We described their clinical phenotype and analyzed the pathogenicity of the detected variants with bioinformatics tools. We further reviewed all previously reported cases with ALS2-related MND. We identified five novel homozygous pathogenic variants in ALS2 at various positions: c.275_276delAT (p.Tyr92CysfsTer11), c.1044C>G (p.Tyr348Ter), c.1718C>A (p.Ala573Glu), c.3161T>C (p.Leu1054Pro), and c.1471+1G>A (NM_020919.3, NP_065970.2). In our cohort, disease onset was in infancy or early childhood with rapid onset of motor neuron signs. Muscle weakness, spasticity, severe dysarthria, dysphagia, and facial weakness were common features in the first decade of life. Frameshift and nonsense mutations clustered in the N-terminal Alsin domains are most prevalent. We enriched the mutational spectrum of ALS2-related disorders with five novel pathogenic variants. Our study indicates a high detection rate of ALS2 mutations in patients with a clinically well-characterized early onset MND. Intrafamilial and even interfamilial diversity in patients with identical pathogenic variants suggest yet unknown modifiers for phenotypic expression
    • …
    corecore