20 research outputs found

    A fully phased accurate assembly of an individual human genome

    Get PDF
    The prevailing genome assembly paradigm is to produce consensus sequences that "collapse" parental haplotypes into a consensus sequence. Here, we leverage the chromosome-wide phasing and scaffolding capabilities of single-cell strand sequencing (Strand-seq) and combine them with high-fidelity (HiFi) long sequencing reads, in a novel reference-free workflow for diploid de novo genome assembly. Employing this strategy, we produce completely phased de novo genome assemblies separately for each haplotype of a single individual of Puerto Rican origin (HG00733) in the absence of parental data. The assemblies are accurate (QV > 40), highly contiguous (contig N50 > 25 Mbp) with low switch error rates (0.4%) providing fully phased single-nucleotide variants (SNVs), indels, and structural variants (SVs). A comparison of Oxford Nanopore and PacBio phased assemblies identifies 150 regions that are preferential sites of contig breaks irrespective of sequencing technology or phasing algorithms

    A draft human pangenome reference

    Get PDF
    Here the Human Pangenome Reference Consortium presents a first draft of the human pangenome reference. The pangenome contains 47 phased, diploid assemblies from a cohort of genetically diverse individuals. These assemblies cover more than 99% of the expected sequence in each genome and are more than 99% accurate at the structural and base pair levels. Based on alignments of the assemblies, we generate a draft pangenome that captures known variants and haplotypes and reveals new alleles at structurally complex loci. We also add 119 million base pairs of euchromatic polymorphic sequences and 1,115 gene duplications relative to the existing reference GRCh38. Roughly 90 million of the additional base pairs are derived from structural variation. Using our draft pangenome to analyse short-read data reduced small variant discovery errors by 34% and increased the number of structural variants detected per haplotype by 104% compared with GRCh38-based workflows, which enabled the typing of the vast majority of structural variant alleles per sample

    Alpha Satellite Insertion Close to an Ancestral Centromeric Region.

    No full text
    Human centromeres are mainly composed of alpha satellite DNA hierarchically organized as higher-order repeats (HORs). Alpha satellite dynamics is shown by sequence homogenization in centromeric arrays and by its transfer to other centromeric locations, for example, during the maturation of new centromeres. We identified during prenatal aneuploidy diagnosis by fluorescent in situ hybridization a de novo insertion of alpha satellite DNA from the centromere of chromosome 18 (D18Z1) into cytoband 15q26. Although bound by CENP-B, this locus did not acquire centromeric functionality as demonstrated by the lack of constriction and the absence of CENP-A binding. The insertion was associated with a 2.8-kbp deletion and likely occurred in the paternal germline. The site was enriched in long terminal repeats and located ∼10 Mbp from the location where a centromere was ancestrally seeded and became inactive in the common ancestor of humans and apes 20-25 million years ago. Long-read mapping to the T2T-CHM13 human genome assembly revealed that the insertion derives from a specific region of chromosome 18 centromeric 12-mer HOR array in which the monomer size follows a regular pattern. The rearrangement did not directly disrupt any gene or predicted regulatory element and did not alter the methylation status of the surrounding region, consistent with the absence of phenotypic consequences in the carrier. This case demonstrates a likely rare but new class of structural variation that we name "alpha satellite insertion." It also expands our knowledge on alphoid DNA dynamics and conveys the possibility that alphoid arrays can relocate near vestigial centromeric sites

    Increased mutation and gene conversion within human segmental duplications

    Get PDF
    Single-nucleotide variants (SNVs) in segmental duplications (SDs) have not been systematically assessed because of the limitations of mapping short-read sequencing data1,2. Here we constructed 1:1 unambiguous alignments spanning high-identity SDs across 102 human haplotypes and compared the pattern of SNVs between unique and duplicated regions3,4. We find that human SNVs are elevated 60% in SDs compared to unique regions and estimate that at least 23% of this increase is due to interlocus gene conversion (IGC) with up to 4.3 megabase pairs of SD sequence converted on average per human haplotype. We develop a genome-wide map of IGC donors and acceptors, including 498 acceptor and 454 donor hotspots affecting the exons of about 800 protein-coding genes. These include 171 genes that have ‘relocated’ on average 1.61 megabase pairs in a subset of human haplotypes. Using a coalescent framework, we show that SD regions are slightly evolutionarily older when compared to unique sequences, probably owing to IGC. SNVs in SDs, however, show a distinct mutational spectrum: a 27.1% increase in transversions that convert cytosine to guanine or the reverse across all triplet contexts and a 7.6% reduction in the frequency of CpG-associated mutations when compared to unique DNA. We reason that these distinct mutational properties help to maintain an overall higher GC content of SD DNA compared to that of unique DNA, probably driven by GC-biased conversion between paralogous sequences

    Regulation of gene expression in Vibrio cholerae by ToxT involves both antirepression and RNA polymerase stimulation

    Full text link
    Co-ordinate expression of many virulence genes in the human pathogen Vibrio cholerae is under the direct control of the ToxT protein, including genes whose products are required for the biogenesis of the toxin-co-regulated pilus (TCP) and cholera toxin (CTX). This work examined interactions between ToxT and the promoters of ctx and tcpA genes. We found that a minimum of three direct repeats of the sequence TTTTGAT is required for ToxT-dependent activation of the ctx promoter, and that the region from –85 to –41 of the tcpA promoter contains elements that are responsive to ToxT-dependent activation. The role of H-NS in transcription of ctx and tcpA was also analysed. The level of activation of ctx–lacZ in an E. coli hns – strain was greatly increased even in the absence of ToxT, and was further enhanced in the presence of ToxT. In contrast, H-NS plays a lesser role in the regulation of the tcpA promoter. Electrophoretic mobility shift assays demonstrated that 6 × His-tagged ToxT directly, and specifically, interacts with both the ctx and tcpA promoters. DNase I footprinting analysis suggests that there may be two ToxT binding sites with different affinity in the ctx promoter and that ToxT binds to –84 to –41 of the tcpA promoter. In vitro transcription experiments demonstrated that ToxT alone is able to activate transcription from both promoters. We hypothesize that under conditions appropriate for ToxT-dependent gene expression, ToxT binds to AT-rich promoters that may have a specific secondary conformation, displaces H-NS and stimulates RNA polymerase resulting in transcription activation.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/71500/1/j.1365-2958.2002.02721.x.pd

    Sequence diversity analyses of an improved rhesus macaque genome enhance its biomedical utility.

    No full text
    The rhesus macaque (Macaca mulatta) is the most widely studied nonhuman primate (NHP) in biomedical research. We present an updated reference genome assembly (Mmul_10, contig N50 = 46 Mbp) that increases the sequence contiguity 120-fold and annotate it using 6.5 million full-length transcripts, thus improving our understanding of gene content, isoform diversity, and repeat organization. With the improved assembly of segmental duplications, we discovered new lineage-specific genes and expanded gene families that are potentially informative in studies of evolution and disease susceptibility. Whole-genome sequencing (WGS) data from 853 rhesus macaques identified 85.7 million single-nucleotide variants (SNVs) and 10.5 million indel variants, including potentially damaging variants in genes associated with human autism and developmental delay, providing a framework for developing noninvasive NHP models of human disease
    corecore