10 research outputs found

    Case of Thyrotoxic Periodic Paralysis in a Caucasian Male and Review of Literature

    Get PDF
    Objective. Thyrotoxic periodic paralysis (TPP), a known condition in Asian men, is becoming increasingly common in men from Western countries. Since suspicion for TPP as a differential in diagnosis is of utmost importance to avoid overcorrection of hypokalemia and other complications, we are reporting a case of TPP in a 25-year-old Caucasian male. Methods. The patient presented with intermittent lower extremity weakness after consumption of a large high-carbohydrate meal. Clinical examination revealed diffusely enlarged thyroid gland, no muscle power in lower extremities, tremors, and brisk deep tendon reflexes. Results. Clinical and laboratory findings were consistent with Graves’ disease and the patient had hypokalemia. The patient responded to potassium repletion and was treated with propylthiouracil and propranolol. After treatment with radioactive iodine, the patient developed postablative hypothyroidism for which he was treated with levothyroxine. Conclusion. Since this condition is overlooked by physicians in Western countries, we present a case of TPP in a Caucasian male thus showing the importance of consideration of TPP in Caucasians despite its rare occurrence and the need for prompt diagnosis to avoid the danger of hyperkalemia in management of the paralytic attack in TPP patients

    Multicenter registry and test bed for extended outpatient hemodynamic monitoring: the hemodynamic frontiers in heart failure (HF2) initiative

    Get PDF
    BackgroundHemodynamic Frontiers in Heart Failure (HF2) is a multicenter academic research consortium comprised of 14 US institutions with mature remote monitoring programs for ambulatory patients with heart failure (HF). The consortium developed a retrospective and prospective registry of patients implanted with a wireless pulmonary artery pressure (PAP) sensor.Goals/aimsHF2 registry collects demographic, clinical, laboratory, echocardiographic (ECHO), and hemodynamic data from patients with PAP sensors. The aims of HF2 are to advance understanding of HF and to accelerate development of novel diagnostic and therapeutic innovations.MethodsHF2 includes adult patients implanted with a PAP sensor as per FDA indications (New York Heart Association (NYHA) Class III HF functional class with a prior hospitalization, or patients with NYHA Class II or brain natriuretic peptide (BNP) elevation without hospitalization) at a HF2 member site between 1/1/19 to present. HF2 registry is maintained at University of Kansas Medical Center (KUMC). The registry was approved by the institutional review board (IRB) at all participating institutions with required data use agreements. Institutions report data into the electronic registry database using REDCap, housed at KUMC.ResultsThis initial data set includes 254 patients implanted from the start of 2019 until May 2023. At time of device implant, the cohort average age is 73 years old, 59.8% are male, 72% have NYHA Class III HF, 40% have left ventricular ejection fraction (LVEF) < 40%, 35% have LVEF > 50%, mean BNP is 560 pg/ml, mean N-Terminal pro-BNP (NTproBNP) is 5,490 pg/ml, mean creatinine is 1.65 mg/dl. Average baseline hemodynamics at device implant are right atrial pressure (RAP) of 11 mmHg, pulmonary artery systolic pressure (PASP) of 47 mmHg, pulmonary artery diastolic pressure (PADP) 21 mmHg, mean pulmonary artery pressure (mPAP) of 20 mmHg, pulmonary capillary wedge pressure (PCWP) of 19 mmHg, cardiac output (CO) of 5.3 L/min, and cardiac index (CI) of 2.5 L/min/m2.ConclusionA real-world registry of patients implanted with a PAP sensor enables long-term evaluation of hemodynamic and clinic outcomes in highly-phenotyped ambulatory HF patients, and creates a unique opportunity to validate and test novel diagnostic and therapeutic approaches to HF

    Orthostatic variation of pulmonary artery pressure in ambulatory heart failure patients

    No full text
    Abstract Aim To study effect of change in position (supine and standing) on pulmonary artery pressure (PAP) in ambulatory heart failure (HF) patients. Methods Seventeen patients with CardioMEMS® sensor and stable heart failure were consented and included in this single center study. Supine and standing measurements were obtained with at least 5 min interval between the two positions. These measurements included PAP readings utilizing the manufacturer handheld interrogator obtaining 10 s data in addition to the systemic blood pressure and heart rate recordings. Results Mean supine and standing readings and their difference (Δ) were as follows respectively: Systolic PAP were 33.4 (± 11.19), 23.6 (± 10) and Δ was 9.9 mmHg (p = 0.0001), diastolic PAP were 14.2 (± 5.6), 7.9 (± 5.7) and Δ was 6.3 mmHg (p = 0.0001) and mean PAP were 21.8 (± 7.8), 14 (± 7.2) and Δ was 7.4 mmHg (p = 0.0001) while the systemic blood pressure did not vary significantly. Conclusion There is orthostatic variation of PAP in ambulatory HF patients demonstrating a mean decline with standing in diastolic PAP by 6.3 mmHg, systolic PAP by 9.9 mmHg and mean PAP by 7.4 mmHg in absence of significant orthostatic variation in systemic blood pressure or heart rate. These findings have significant clinical implications and inform that PAP in each patient should always be measured in the same position. Since initial readings at the time of implant were taken in supine position, it may be best to use supine position or to obtain a baseline standing PAP reading if standing PAP is planned on being used
    corecore