5 research outputs found

    Histone-targeted nucleic acid delivery for tissue regenerative applications

    No full text
    Sullivan, MillicentNucleic acid delivery has garnered significant attention as an innovative therapeutic approach for treating a wide variety of diseases. However, the design of non-viral delivery systems that negotiate efficient intracellular trafficking and nuclear entry represents a significant challenge. Overcoming these hurdles requires a combination of well-controlled materials approaches with techniques to understand and direct cellular delivery. Recent investigations have highlighted the roles histone tail sequences play in directing nuclear delivery and retention, as well as activating DNA transcription. We established the ability to recapitulate these natural histone tail activities within non-viral gene nanocarriers, driving gene transfer/expression by enabling effective navigation to the nucleus via retrograde vesicular trafficking. A unique finding of this histone-targeted approach was that nanocarriers gained enhanced access to the nucleus during mitosis. ☐ The work described in this dissertation builds off of these fundamental insights to facilitate the translation of this histone-targeted delivery approach toward regenerative medicine applications. During native tissue repair, actively proliferating mesenchymal stem cells (MSCs) respond to a complex series of growth factor signals that direct their differentiation. Accordingly, the investigations in this work focused on utilizing the histone-targeted nanocarriers to enhance osteogenic growth factor gene transfer in dividing MSCs leading to augmented MSC chondrogenic differentiation, an essential first step in skeletal tissue repair. Concurrently, additional studies focused on optimizing the histone-targeted nanocarrier design strategy to enable improved plasmid DNA (pDNA) binding stability and tunable harnessing of native cellular processing pathways for enhanced gene transfer. ☐ Overall, the work presented herein demonstrated substantial increases in growth factor expression following histone-targeted gene transfer. This enhanced expression enabled more robust levels of chondrogenesis in MSCs than treatments with equivalent amounts of recombinant growth factor protein. Additionally, nanocarrier design optimization provided effective pDNA condensation and controllable interactions with native histone effectors. Importantly, these optimized nanocarriers conferred stable nanoplex formation and maintained transfection efficiency under physiologically relevant conditions. Taken together, these advances may help drive the clinical translation of histone-targeted nucleic acid delivery strategies for the regeneration of damaged tissue following traumatic injuryUniversity of Delaware, Department of Chemical and Biomolecular EngineeringPh.D

    Histone-targeted Polyplexes Avoid Endosomal Escape and Enter the Nucleus During Postmitotic Redistribution of ER Membranes

    No full text
    Nonviral gene delivery is a promising therapeutic approach because of its safety and controllability, yet limited gene transfer efficacy is a common issue. Most nonviral strategies rely upon endosomal escape designs; however, endosomal escape is often uncorrelated with improved gene transfer and membranolytic structures are typically cytotoxic. Previously, we showed that histone-targeted polyplexes trafficked to the nucleus through an alternative route involving caveolae and the Golgi and endoplasmic reticulum (ER), using pathways similar to several pathogens. We hypothesized that the efficacy of these polyplexes was due to an increased utilization of native vesicular trafficking as well as regulation by histone effectors. Accordingly, using confocal microscopy and cellular fractionation, we determined that a key effect of histone-targeting was to route polyplexes away from clathrin-mediated recycling pathways by harnessing endomembrane transfer routes regulated by histone methyltransferases. An unprecedented finding was that polyplexes accumulated in Rab6-labeled Golgi/ER vesicles and ultimately shuttled directly into the nucleus during ER-mediated nuclear envelope reassembly. Specifically, super resolution microscopy and fluorescence correlation spectroscopy unequivocally indicated that the polyplexes remained associated with ER vesicles/membranes until mitosis, when they were redistributed into the nucleus. These novel findings highlight alternative mechanisms to subvert endolysosomal trafficking and harness the ER to enhance gene transfer

    Electrostatically Mediated Attractive Self-Interactions and Reversible Self-Association of Fc-Fusion Proteins

    No full text
    Attractive self-interactions and reversible self-association are implicated in many problematic solution behaviors for therapeutic proteins, such as irreversible aggregation, elevated viscosity, phase separation, and opalescence. Protein self-interactions and reversible oligomerization of two Fc-fusion proteins (monovalent and bivalent) and the corresponding fusion partner protein were characterized experimentally with static and dynamic light scattering as a function of pH (5 and 6.5) and ionic strength (10 mM to at least 300 mM). The fusion partner protein and monovalent Fc-fusion each displayed net attractive electrostatic self-interactions at pH 6.5 and net repulsive electrostatic self-interactions at pH 5. Solutions of the bivalent Fc-fusion contained higher molecular weight species that prevented quantification of typical interaction parameters (B22 and kD). All three of the proteins displayed reversible self-association at pH 6.5, where oligomers dissociated with increased ionic strength. Coarse-grained molecular simulations were used to model the self-interactions measured experimentally, assess net self-interactions for the bivalent Fc-fusion, and probe the specific electrostatic interactions between charged amino acids that were involved in attractive electrostatic self-interactions. Mayer-weighted pairwise electrostatic energies from the simulations suggested that attractive electrostatic self-interactions at pH 6.5 for the two Fc-fusion proteins were due to cross-domain interactions between the fusion partner domain(s) and the Fc domain

    Stereotactic ablative radiotherapy versus lobectomy for operable stage I non-small-cell lung cancer: a pooled analysis of two randomised trials

    No full text
    Background The standard of care for operable, stage I, non-small-cell lung cancer (NSCLC) is lobectomy with mediastinal lymph node dissection or sampling. Stereotactic ablative radiotherapy (SABR) for inoperable stage I NSCLC has shown promising results, but two independent, randomised, phase 3 trials of SABR in patients with operable stage I NSCLC (STARS and ROSEL) closed early due to slow accrual. We aimed to assess overall survival for SABR versus surgery by pooling data from these trials. Methods Eligible patients in the STARS and ROSEL studies were those with clinical T1-2a ( Findings 58 patients were enrolled and randomly assigned (31 to SABR and 27 to surgery). Median follow-up was 40.2 months (IQR 23.0-47.3) for the SABR group and 35.4 months (18.9-40.7) for the surgery group. Six patients in the surgery group died compared with one patient in the SABR group. Estimated overall survival at 3 years was 95% (95% CI 85-100) in the SABR group compared with 79% (64-97) in the surgery group (hazard ratio [HR] 0.14 [95% CI 0.017-1.190], log-rank p= 0.037). Recurrence-free survival at 3 years was 86% (95% CI 74-100) in the SABR group and 80% (65-97) in the surgery group (HR 0.69 [95% CI 0.21-2.29], log-rank p= 0.54). In the surgery group, one patient had regional nodal recurrence and two had distant metastases; in the SABR group, one patient had local recurrence, four had regional nodal recurrence, and one had distant metastases. Three (10%) patients in the SABR group had grade 3 treatment-related adverse events (three [10%] chest wall pain, two [6%] dyspnoea or cough, and one [3%] fatigue and rib fracture). No patients given SABR had grade 4 events or treatment-related death. In the surgery group, one (4%) patient died of surgical complications and 12 (44%) patients had grade 3-4 treatment-related adverse events. Grade 3 events occurring in more than one patient in the surgery group were dyspnoea (four [15%] patients), chest pain (four [15%] patients), and lung infections (two [7%]). Interpretation SABR could be an option for treating operable stage I NSCLC. Because of the small patient sample size and short follow-up, additional randomised studies comparing SABR with surgery in operable patients are warranted
    corecore