320 research outputs found
Factors associated with benign multiple sclerosis in the New York State MS Consortium (NYSMSC)
BACKGROUND: This retrospective analysis explored prognostic factors associated with a benign multiple sclerosis (BMS) disease course at baseline and over the 4-year follow-up. METHODS: Patients from the centralized New York State Multiple Sclerosis Consortium registry were classified as having BMS according to 3 different criteria centered on disease duration and disability. Additional analyses explored prognostic factors associated with BMS using the most conservative disability criteria (Expanded Disability Status Scale ≤2 and disease duration ≥10 years). RESULTS: Among 6258 patients who fulfilled eligibility criteria, 19.8 % to 33.3 % were characterized as having BMS, at baseline depending on classification criteria used. Positive prognostic factors for BMS at baseline included female sex (p < 0.0001) and younger age at onset (p < 0.0001); negative prognostic factors included progressive-onset type of MS and African-American race. Of the 1237 BMS patients (per most conservative criteria), 742 were followed for a median of 4 years to explore effect of disease-modifying treatment (DMT) on benign status. DMT (p = 0.009) and longer disease duration (p = 0.007) were the only significant positive predictors of maintaining BMS at follow-up. The protective effect was stronger for patients taking DMT at both enrollment and follow-up (OR = 0.71; p = 0.006). CONCLUSIONS: There is a need for development of more reliable prognostic indicators of BMS. Use of DMT was significantly associated with maintaining a benign disease state. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12883-016-0623-2) contains supplementary material, which is available to authorized users
High-resolution profiling of protein occupancy on polyadenylated RNA transcripts
A key prerequisite to understand how gene regulatory processes are controlled by the interplay of RNA-binding proteins (RBPs) and ribonucleoprotein complexes with RNAs is the generation of comprehensive high-resolution maps of protein-RNA interactions. Recent advances in next-generation sequencing technology accelerated the development of various crosslinking and immunoprecipitation (CLIP) approaches to broadly identify RNA regions contacted by RNA-binding proteins. However these methods only consider single RNA-binding proteins and their contact sites, irrespective of the overall cis-regulatory sequence space contacted by other RNA interacting factors. Here we describe the application of protein occupancy profiling, a novel approach that globally displays the RNA contact sites of the poly(A)+ RNA-bound proteome. Protein occupancy profiling enables the generation of transcriptome-wide maps of protein-RNA interactions on polyadenylated transcripts and narrows the sequence search space for transcript regions involved in cis-regulation of gene expression in response to internal or external stimuli, altered cellular programs or disease
Geographical variation of cerebrovascular disease in New York State: the correlation with income
BACKGROUND: Income is known to be associated with cerebrovascular disease; however, little is known about the more detailed relationship between cerebrovascular disease and income. We examined the hypothesis that the geographical distribution of cerebrovascular disease in New York State may be predicted by a nonlinear model using income as a surrogate socioeconomic risk factor. RESULTS: We used spatial clustering methods to identify areas with high and low prevalence of cerebrovascular disease at the ZIP code level after smoothing rates and correcting for edge effects; geographic locations of high and low clusters of cerebrovascular disease in New York State were identified with and without income adjustment. To examine effects of income, we calculated the excess number of cases using a non-linear regression with cerebrovascular disease rates taken as the dependent variable and income and income squared taken as independent variables. The resulting regression equation was: excess rate = 32.075 - 1.22*10(-4)(income) + 8.068*10(-10)(income(2)), and both income and income squared variables were significant at the 0.01 level. When income was included as a covariate in the non-linear regression, the number and size of clusters of high cerebrovascular disease prevalence decreased. Some 87 ZIP codes exceeded the critical value of the local statistic yielding a relative risk of 1.2. The majority of low cerebrovascular disease prevalence geographic clusters disappeared when the non-linear income effect was included. For linear regression, the excess rate of cerebrovascular disease falls with income; each $10,000 increase in median income of each ZIP code resulted in an average reduction of 3.83 observed cases. The significant nonlinear effect indicates a lessening of this income effect with increasing income. CONCLUSION: Income is a non-linear predictor of excess cerebrovascular disease rates, with both low and high observed cerebrovascular disease rate areas associated with higher income. Income alone explains a significant amount of the geographical variance in cerebrovascular disease across New York State since both high and low clusters of cerebrovascular disease dissipate or disappear with income adjustment. Geographical modeling, including non-linear effects of income, may allow for better identification of other non-traditional risk factors
Reasons for discontinuation of subcutaneous interferon β-1a three times a week among patients with multiple sclerosis: a real-world cohort study
BACKGROUND: Continuation of interferon (IFN) β-based therapies is important for maximum treatment effectiveness in patients with multiple sclerosis (MS); however, few real-world data are available on discontinuation from IFN β. The aim of this cohort analysis was to estimate real-world discontinuation rates up to 3 years among MS patients in the United States taking subcutaneous (sc) IFN β-1a three times a week (tiw) and to identify whether the factors associated with discontinuation change over time. METHODS: Patient data were pooled from the MarketScan(©) Commercial and Medicare Supplemental healthcare claims databases. Patients with ≥1 multiple sclerosis diagnosis who were sc IFN β-1a tiw naïve, had ≥1 year of continuous eligibility before treatment, and ≥1 prescription were followed from first prescription (index date) until date of discontinuation, switch, or end of observation. Treatment status was analysed at exactly 1, 2 or 3 years after index. Multivariable models were used to identify drivers of discontinuation. RESULTS: Data from 5956 patients were included; 2862 patients (48.1%) discontinued therapy. Discontinuation rates were 36.9% (1 year), 49.5% (2 years) and 55.8% (3 years). A greater proportion of discontinuing patients had poor adherence (<80% [94.0%] versus ≥80% [51.7%]) or were taking additional medication at follow-up versus the overall population. Factors independently associated with discontinuation irrespective of time on therapy were increasing number of magnetic resonance imaging scans (1 year adjusted odds ratio 1.45, 95% confidence interval 1.26–1.67; 2 years 1.18, 1.06–1.32; 3 years 1.20, 1.07–1.34) and adherence <80% versus ≥80% (1 year 180.95, 135.84–241.03; 2 years 135.80, 100.10–184.23; 3 years 174.89, 115.27–265.38). Factors associated only with early discontinuation (at 1 year) were ≥3 sets of laboratory investigations versus none (2.54, 1.20–5.38), and anxiolytic use at follow-up (1.40, 1.06–1.82). Factors associated only with later discontinuation (at 2 years and/or at 3 years) were antidepressant use at follow-up (2 years 1.46, 1.10–1.94) and greater number of relapses (2 years 1.60, 1.11–2.30; 3 years 2.31, 1.27–4.22). CONCLUSIONS: Potential drivers of discontinuation change over time. Improved awareness of the drivers of discontinuation could lead to targeted interventions to improve adherence. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12883-017-0831-4) contains supplementary material, which is available to authorized users
Immunomodulatory responses of peripheral blood mononuclear cells from multiple sclerosis patients upon in vitro incubation with the flavonoid luteolin: additive effects of IFN-β
The study is aimed to determine the role of luteolin (3',4',5,7-tetrahydroxyflavone), alone and in combination with human interferon-beta (IFN-β), in modulating the immune response(s) of peripheral blood mononuclear cells (PBMCs) isolated from multiple sclerosis (MS) patients. PBMC proliferation in the presence or absence of these drugs was determined and the production of pro-inflammatory cytokines (IL-1β, TNF-α), and the ratio of cell migration mediator MMP-9, and its inhibitor, TIMP-1 was assessed in the culture supernatants. Luteolin reduced, in a dose-dependent manner, the proliferation of PBMCs, and modulated the levels of IL-1β and TNF-α released by PBMCs in the culture supernatants. Luteolin reduced the MMP-9/TIMP-1 ratio via lowering MMP-9 production. In the majority of cases, luteolin, when combined with IFN-β, had additive effects in modulating cell proliferation, IL-1β, TNF-α, MMP-9 and TIMP-1
Comprehensive protein interactome analysis of a key RNA helicase: detection of novel stress granule proteins
DDX6 (p54/RCK) is a human RNA helicase with central roles in mRNA decay and translation repression. To help our understanding of how DDX6 performs these multiple functions, we conducted the first unbiased, large-scale study to map the DDX6-centric protein-protein interactome using immunoprecipitation and mass spectrometry. Using DDX6 as bait, we identify a high-confidence and high-quality set of protein interaction partners which are enriched for functions in RNA metabolism and ribosomal proteins. The screen is highly specific, maximizing the number of true positives, as demonstrated by the validation of 81% (47/58) of the RNA-independent interactors through known functions and interactions. Importantly, we minimize the number of indirect interaction partners through use of a nuclease-based digestion to eliminate RNA. We describe eleven new interactors, including proteins involved in splicing which is an as-yet unknown role for DDX6. We validated and characterized in more detail the interaction of DDX6 with Nuclear fragile X mental retardation-interacting protein 2 (NUFIP2) and with two previously uncharacterized proteins, FAM195A and FAM195B (here referred to as granulin-1 and granulin-2, or GRAN1 and GRAN2). We show that NUFIP2, GRAN1, and GRAN2 are not P-body components, but re-localize to stress granules upon exposure to stress, suggesting a function in translation repression in the cellular stress response. Using a complementary analysis that resolved DDX6's multiple complex memberships, we further validated these interaction partners and the presence of splicing factors. As DDX6 also interacts with the E3 SUMO ligase TIF1β, we tested for and observed a significant enrichment of sumoylation amongst DDX6's interaction partners. Our results represent the most comprehensive screen for direct interaction partners of a key regulator of RNA life cycle and localization, highlighting new stress granule components and possible DDX6 functions-many of which are likely conserved across eukaryotes
Diagnostic potential of plasma carboxymethyllysine and carboxyethyllysine in multiple sclerosis
<p>Abstract</p> <p>Background</p> <p>This study compared the level of advanced glycation end products (AGEs), <it>N</it>-(Carboxymethyl)lysine (CML) and <it>N</it>-(Carboxyethyl)lysine (CEL), in patients with multiple sclerosis (MS) and healthy controls (HCs), correlating these markers with clinical indicators of MS disease severity.</p> <p>Methods</p> <p>CML and CEL plasma levels were analyzed in 99 MS patients and 43 HCs by tandem mass spectrometry (LC/MS/MS). Patients were stratified based on drug modifying therapies (DMTs) including interferon beta, glatiramer acetate and natalizumab.</p> <p>Results</p> <p>The level of plasma CEL, but not CML, was significantly higher in DMT-naïve MS patients when compared to HCs (P < 0.001). Among MS patients, 91% had higher than mean plasma CEL observed in HCs. DMTs reduced CML and CEL plasma levels by approximately 13% and 40% respectively. CML and CEL plasma levels correlated with the rate of MS clinical relapse.</p> <p>Conclusion</p> <p>Our results suggest that AGEs in general and CEL in particular could be useful biomarkers in MS clinical practice. Longitudinal studies are warranted to determine any causal relationship between changes in plasma level of AGEs and MS disease pathology. These studies will pave the way for use of AGE inhibitors and AGE-breaking agents as new therapeutic modalities in MS.</p
An upscaling multi-level and multi-hazard risk assessment for heat and other natural hazards concerning vulnerable groups in Žilina, Slovakia
Climate change, natural hazards and heat stress increasingly affect everyone, with particularly severe impacts on vulnerable populations and individuals with special needs. However, there is a research gap in integrating peoples’ needs with different levels of the built environment and spatial planning frameworks. This study analyses Žilina city, a major hub in North-Western Slovakia that is exposed to multiple natural hazards. A spatial assessment is conducted in this study, showing heat, earthquake, fire, flood, and landslide risks for the city, using Geographic Information Systems (GIS). Critical infrastructure exposure is mapped, and a built environment typology is developed to provide additional detail. Building exterior and interior information for the vulnerability analysis of the building and its current occupants is gathered through site visits, orthophotography, and street view photography. The results reveal hotspots of risk and special needs groups, as well as how this information can be scaled up to improve evacuation and reduce heat stress. This risk transect analysis, encompassing the individual, building, built environment, and city levels, can support more integrated and effective multi-risk assessment and management.info:eu-repo/semantics/publishedVersio
Context-specific regulation of cell survival by a miRNA-controlled BIM rheostat
Knockout of the ubiquitously expressed miRNA-17~92 cluster in mice produces a lethal developmental lung defect, skeletal abnormalities, and blocked B lymphopoiesis. A shared target of miR-17~92 miRNAs is the pro-apoptotic protein BIM, central to life-death decisions in mammalian cells. To clarify the contribution of miR-17~92:Bim interactions to the complex miR-17~92 knockout phenotype, we used a system of conditional mutagenesis of the nine Bim 3' UTR miR-17~92 seed matches. Blocking miR-17~92:Bim interactions early in development phenocopied the lethal lung phenotype of miR-17~92 ablation and generated a skeletal kinky tail. In the hematopoietic system, instead of causing the predicted B cell developmental block, it produced a selective inability of B cells to resist cellular stress; and prevented B and T cell hyperplasia caused by Bim haploinsufficiency. Thus, the interaction of miR-17~92 with a single target is essential for life, and BIM regulation by miRNAs serves as a rheostat controlling cell survival in specific physiological contexts
Knowledge, attitude, and behavior in patients with atrial fibrillation undergoing radiofrequency catheter ablation
- …
