8,547 research outputs found
Entanglement and its Role in Shor's Algorithm
Entanglement has been termed a critical resource for quantum information
processing and is thought to be the reason that certain quantum algorithms,
such as Shor's factoring algorithm, can achieve exponentially better
performance than their classical counterparts. The nature of this resource is
still not fully understood: here we use numerical simulation to investigate how
entanglement between register qubits varies as Shor's algorithm is run on a
quantum computer. The shifting patterns in the entanglement are found to relate
to the choice of basis for the quantum Fourier transform.Comment: 15 pages, 4 eps figures, v1-3 were for conference proceedings (not
included in the end); v4 is improved following referee comments, expanded
explanations and added reference
General practitioners' reasons for removing patients from their lists: postal survey in England and Wales
The removal of patients from doctors' lists causes conÂ
siderable public and political concern, with speculation
that patients are removed for inappropriate, including
financial, reasons. In 1999 the House of Commons
Select Committee on Public Administration noted that
little evidence was available on either the frequency of,
or the reasons for, removal of patients. National statistics do not distinguish between patients removed after
moving out of a practice area and those removed for
other reasons. Two postal surveys have reported why
general practitioners might, in general, remove
patients, and one small study has described the
reasons doctors give for particular removals. We
therefore determined the current scale of, and doctors'
reasons for, removal of patients from their lists in EngÂ
land and Wales
Signatures of the collapse and revival of a spin Schr\"{o}dinger cat state in a continuously monitored field mode
We study the effects of continuous measurement of the field mode during the
collapse and revival of spin Schr\"{o}dinger cat states in the Tavis-Cummings
model of N qubits (two-level quantum systems) coupled to a field mode. We show
that a compromise between relatively weak and relatively strong continuous
measurement will not completely destroy the collapse and revival dynamics while
still providing enough signal-to-noise resolution to identify the signatures of
the process in the measurement record. This type of measurement would in
principle allow the verification of the occurrence of the collapse and revival
of a spin Schr\"{o}dinger cat state.Comment: 5 pages, 2 figure
Entangling photons using a charged quantum dot in a microcavity
We present two novel schemes to generate photon polarization entanglement via
single electron spins confined in charged quantum dots inside microcavities.
One scheme is via entangled remote electron spins followed by
negatively-charged exciton emissions, and another scheme is via a single
electron spin followed by the spin state measurement. Both schemes are based on
giant circular birefringence and giant Faraday rotation induced by a single
electron spin in a microcavity. Our schemes are deterministic and can generate
an arbitrary amount of multi-photon entanglement. Following similar procedures,
a scheme for a photon-spin quantum interface is proposed.Comment: 4 pages, 4 figure
Electromagnetic Actuated Stiring in Microbioreactor Enabling Easier Multiplexing and Flexible Device Design
The development of a novel electromagnetically (EM) actuated stirring method, for use in microbioreactors, is reported. Mixing in microbioreactors is critical to ensure even distribution of nutrients to microorganisms and cells. Magnetically driven stirrer bars or peristaltic mixing are the most commonly utilised mixing methods employed in completely liquid-filled microbioreactors. However the circular reactor shape required for mixing with a stirrer bar and frequently used for peristaltically mixed microbioreactors presents difficulties for bubble-free priming in a microfluidic bioreactor. Moreover the circular shape and the hardware required for both types of mixing reduces the potential packing density of multiplexed reactors. We present a new method of mixing, displaying design flexibility by demonstrating mixing in circular and diamond-shaped reactors and a duplex diamond reactor and fermentation of the gram-positive bacteria S. carnosus in a diamond-shaped microbioreactor system. The results of the optimisation of this mixing method for performing fermentations alongside both batch and continuous culture fermentations are presentedPeer reviewe
- …