11 research outputs found

    Separate F-Type Plasmids Have Shaped the Evolution of the H30 Subclone of Escherichia coli Sequence Type 131.

    Get PDF
    The extraintestinal pathogenic Escherichia coli (ExPEC) H30 subclone of sequence type 131 (ST131-H30) has emerged abruptly as a dominant lineage of ExPEC responsible for human disease. The ST131-H30 lineage has been well described phylogenetically, yet its plasmid complement is not fully understood. Here, single-molecule, real-time sequencing was used to generate the complete plasmid sequences of ST131-H30 isolates and those belonging to other ST131 clades. Comparative analyses revealed separate F-type plasmids that have shaped the evolution of the main fluoroquinolone-resistant ST131-H30 clades. Specifically, an F1:A2:B20 plasmid is strongly associated with the H30R/C1 clade, whereas an F2:A1:B− plasmid is associated with the H30Rx/C2 clade. A series of plasmid gene losses, gains, and rearrangements involving IS26 likely led to the current plasmid complements within each ST131-H30 sublineage, which contain several overlapping gene clusters with putative functions in virulence and fitness, suggesting plasmid-mediated convergent evolution. Evidence suggests that the H30Rx/C2-associated F2:A1:B− plasmid type was present in strains ancestral to the acquisition of fluoroquinolone resistance and prior to the introduction of a multidrug resistance-encoding gene cassette harboring blaCTX-M-15. In vitro experiments indicated a host strain-independent low frequency of plasmid transfer, differential levels of plasmid stability even between closely related ST131-H30 strains, and possible epistasis for carriage of these plasmids within the H30R/Rx lineages. IMPORTANCE A clonal lineage of Escherichia coli known as ST131 has emerged as a dominating strain type causing extraintestinal infections in humans. The evolutionary history of ST131 E. coli is now well understood. However, the role of plasmids in ST131’s evolutionary history is poorly defined. This study utilized real-time, single-molecule sequencing to compare plasmids from various current and historical lineages of ST131. From this work, it was determined that a series of plasmid gains, losses, and recombinational events has led to the currently circulating plasmids of ST131 strains. These plasmids appear to have evolved to acquire similar gene clusters on multiple occasions, suggesting possible plasmid-mediated convergent evolution leading to evolutionary success. These plasmids also appear to be better suited to exist in specific strains of ST131 due to coadaptive mutations. Overall, a series of events has enabled the evolution of ST131 plasmids, possibly contributing to the lineage’s success

    Survey of clinical and commensal Escherichia coli from commercial broilers and turkeys, with emphasis on high-risk clones using APECTyper

    No full text
    ABSTRACT: Molecular characterization of avian pathogenic Escherichia coli (APEC) is challenging due to the complex nature of its associated disease, colibacillosis, in poultry. Numerous efforts have been made toward defining APEC, and it is becoming clear that certain clonal backgrounds are predictive of an avian E. coli isolate's virulence potential. Thus, APEC can be further differentiated as high-risk APEC based upon their clonal background's virulence potential. However, less clear is the degree of overlap between clinical isolates of differing bird type, and between clinical and gastrointestinal isolates. This study aimed to determine genomic similarities and differences between such populations, comparing commercial broiler vs. turkey isolates, and clinical vs. gastrointestinal isolates. Differences were observed in Clermont phylogenetic groups between isolate populations, with B2 as the dominant group in turkey clinical isolates and G as the dominant group in broiler clinical isolates. Nearly all clinical isolates were classified as APEC using a traditional gene-based typing scheme, whereas 53.4% and 44.1% of broiler and turkey gastrointestinal isolates were classified as APEC, respectively. High-risk APEC were identified among 31.0% and 46.9% of broiler and turkey clinical isolates, compared with 5.7% and 2.9% of broiler and turkey gastrointestinal isolates. As found in previous studies, no specific known virulence or fitness gene sets were identified which universally differentiate between clinical and gastrointestinal isolates. This study further demonstrates the utility of a hybrid APEC typing approach, considering both plasmid content and clonal background, for the identification of dominant and highly virulent APEC clones in poultry production

    Dendrogram of 240 non-typhoidal <i>Salmonella</i> isolates depicting multidrug-resistant phenotype distribution across <i>S</i>. <i>enterica</i> pulsotypes.

    No full text
    <p>Each isolate was presented by the corresponding antibiogram. The shaded rectangles mark three major MDR patterns with the evolved counterparts as green (i.e., penicillins, tetracyclines, and macrolides with fifteen other MDR-associated patterns, see legend), light red (i.e., FP inhibitors, macrolides, and aminocyclitol with three other MDR-associated patterns) and light blue (i.e., penicillins, cephalosporins, tetracyclines, phenicols, and macrolides with one more MDR-associated pattern). Vertical bars on the far right identify the host origin of <i>Salmonella enterica</i> spp. isolates.</p

    Population structure based on antimicrobial phenotypes of 240 non-typhoidal <i>Salmonella</i> isolates obtained from avian, bovine and porcine hosts.

    No full text
    <p><b>A)</b> The entire collection of <i>Salmonella</i> isolates consisted of three clusters (K 3). The three clusters are color-coded: cluster A is red, cluster B is blue, and cluster C is green. The values along the “y” axis represent the membership probabilities for the three clusters. Each isolate is represented by a single vertical line partitioned into three segments, representing the antimicrobial phenotype admixture that reflects the overall membership in each of these three clusters. <b>B)</b> Triangle plot of a Bayesian cluster analysis showing the distribution of avian (green), porcine (blue) and bovine (red) isolates within the examined collection of NTS.</p

    Strong influence of livestock environments on the emergence and dissemination of distinct multidrug-resistant phenotypes among the population of non-typhoidal <i>Salmonella</i>

    No full text
    <div><p>The problem of emergence and dissemination of multidrug resistance, especially among Gram-negative bacteria, has reached alarming levels. This increases the need to develop surveillance methods that more effectively and accurately provide information about the emergence and spread of multidrug-resistant organisms. In this study, using a well-defined population of non-typhoidal <i>Salmonella</i> (NTS) isolates associated with avian, bovine and porcine hosts, we found that the livestock environments had a specific (P < 0.005) and profound (P < 0.005) effect on the evolution of multidrug-resistant phenotypes among population of NTS isolates. The MDR pattern containing penicillins, tetracyclines and macrolides and the evolving counterparts (i.e., penicillins, tetracyclines and macrolides + other antibiotic classes) were significantly (P < 0.005) associated with NTS isolates of porcine origin. Similarly, MDR patterns containing folate pathway inhibitors, macrolides and aminocyclitol or containing penicillins, cephalosporins, tetracyclines, phenicols and macrolides were significantly associated with avian (P < 0.005) and bovine (P < 0.005) NTS isolates, respectively. Furthermore, STRUCTURE, an evolutionary analysis, clearly showed that the host origin (i.e., livestock environment), and not the genetic background of different NTS serovars, was the most determinative factor for acquisition and spread of MDR phenotypes. In addition, we described a novel non-synonymous mutation, located outside of the QRDR at position 864 of GyrA, that was likely associated with fluoroquinolone resistance.</p></div

    Evidence of host specificity in Lactobacillus johnsonii genomes and its influence on probiotic potential in poultry

    No full text
    ABSTRACT: To date, the selection of candidate strains for probiotic development in production animals has been largely based upon screens for desired phenotypic traits. However, increasing evidence indicates that the use of host-specific strains may be important, because coevolution with the animal host better prepares a bacterial strain to colonize and succeed in its respective host animal species. This concept was applied to Lactobacillus johnsonii in commercial poultry production because of its previous correlation with enhanced bird performance. Using 204 naturally isolated chicken- and turkey-source L. johnsonii, we demonstrate that there is a strong phylogenetic signal for coevolution with the animal host. These isolates differ phenotypically, even within host source, and these differences can be correlated with certain L. johnsonii phylogenetic clades. In commercial turkey poults, turkey-specific strains with strong in vitro phenotypes performed better early in life than strains lacking those phenotypes. A follow-up performance trial in broiler chickens demonstrated that chicken-specific strains result in better overall bird performance than nonchicken-specific strains. Collectively, this work provides evidence for the impact of host adaptation on a probiotic strain's potential. Furthermore, this top-down approach is useful for screening larger numbers of isolates for probiotic candidates

    The Possible Influence of Non-synonymous Point Mutations within the FimA Adhesin of Non-typhoidal Salmonella (NTS) Isolates in the Process of Host Adaptation

    No full text
    Non-typhoidal Salmonella (NTS) remains a global pathogen that affects a wide range of animal species. We analyzed a large number of NTS isolates of different host origins, including Salmonella Heidelberg (n = 80, avian), S. Dublin (50, bovine), S. Typhimurium var 5- (n = 40, porcine), S. 4,5,12,:i:- (n = 40, porcine), S. Cerro (n = 16, bovine), and S. Montevideo (n = 14, bovine), using virulence profiling of the bcfC, mgtC, ssaC, invE, pefA, stn, sopB, and siiE virulence-associated genes, a biofilm production assay, pulsed field gel electrophoresis, and the full-length sequencing of the fimA (adhesin) and iroN (receptor) genes. We determined a key amino acid substitution, A169 (i.e., threonine changed to alanine at position 169), in the FimA protein that changed ligand affinity of FimA toward N-acetyl-D-glucosamine. This finding clearly indicates the important role of non-synonymous single nucleotide polymorphism (nsSNPs) in adhesin functionality that may impact the host tropism of NTS. This nsSNP was found in S. Heidelberg and S. Cerro isolates. Although this was not the case for the IroN receptor, the phylogeny of this receptor and different host origins of NTS isolates were positively correlated, suggesting existence of specific host immune selective pressures on this unique receptor in S. enterica. We found that pefA, a gene encoding major fimbrial subunit, was the most-segregative virulence factor. It was associated with S. Heidelberg, S. Typhimurium var 5- and S. 4,5,12,:i:- but not with the rest of NTS strains. Further, we observed a significantly higher frequency of non-biofilm producers among NTS strains that do not carry pefA (42.5%) compared to S. Heidelberg (2.5%) and S. Typhimurium var 5- (7.5%) and S. 4,5,12,:i:- (0%). This study provides new insights into the host adaptation of avian and mammalian NTS isolates that are based on the bacterial antigens FimA and IroN as well as the interrelationships between host adaptation, overall genetic relatedness, and virulence potential in these NTS isolates
    corecore