5 research outputs found

    Small tandem DNA duplications result from CST-guided Pol alpha-primase action at DNA break termini

    Get PDF
    Error-prone repair of DNA double-strand breaks have been implied to cause cancer-associated genome alterations, but the mechanism of their formation remains unclear. Here the authors find that DNA polymerase alpha primase plays part in tandem duplication formation at CRISPR/Cas9-induced complementary 3 ' ssDNA protrusions.Small tandem duplications of DNA occur frequently in the human genome and are implicated in the aetiology of certain human cancers. Recent studies have suggested that DNA double-strand breaks are causal to this mutational class, but the underlying mechanism remains elusive. Here, we identify a crucial role for DNA polymerase alpha (Pol alpha)-primase in tandem duplication formation at breaks having complementary 3 ' ssDNA protrusions. By including so-called primase deserts in CRISPR/Cas9-induced DNA break configurations, we reveal that fill-in synthesis preferentially starts at the 3 ' tip, and find this activity to be dependent on 53BP1, and the CTC1-STN1-TEN1 (CST) and Shieldin complexes. This axis generates near-blunt ends specifically at DNA breaks with 3 ' overhangs, which are subsequently repaired by non-homologous end-joining. Our study provides a mechanistic explanation for a mutational signature abundantly observed in the genomes of species and cancer cells.Genome Instability and Cance

    Congenital heart disease in the ESC EORP Registry of Pregnancy and Cardiac disease (ROPAC)

    Get PDF
    corecore