12,464 research outputs found

    Mixing of two-level unstable systems

    Get PDF
    Unstable particles can be consistently described in the framework of quantum field theory. Starting from the full S-matrix amplitudes of B^+ --> (2 pi, 3 pi) l nu decays as examples in the energy region where the rho-omega resonances are dominating, we propose a prescription for the mixing of two quasi `physical' unstable states that differs from the one obtained from the diagonalization of the M -i*Gamma/2 non-hermitian hamiltonian. We discuss some important consequences for CP violation in the K_L - K_S system.Comment: 7 pages, Latex. A factor 1/2 removed from r.h.s. of Eqs. (12)-(15). Conclusions unchange

    Further remarks on isospin breaking in charmless semileptonic B decays

    Get PDF
    We consider the isospin breaking corrections to charmless semileptonic decays of B mesons. Both, the recently measured branching ratios of exclusive decays by the CLEO Collaboration and the end-point reion of the inclusive lepton spectrum in form factor models, can be affected by these corrections. Isospin corrections can affect the determination of |V_ub| from exclusive semileptonic B decays at a level comparable to present statistical uncertainties.Comment: Latex, 7 pages, 1 .ps figure, to appear in Phys. Rev.

    Seeking Quantum Speedup Through Spin Glasses: The Good, the Bad, and the Ugly

    Get PDF
    There has been considerable progress in the design and construction of quantum annealing devices. However, a conclusive detection of quantum speedup over traditional silicon-based machines remains elusive, despite multiple careful studies. In this work we outline strategies to design hard tunable benchmark instances based on insights from the study of spin glasses - the archetypal random benchmark problem for novel algorithms and optimization devices. We propose to complement head-to-head scaling studies that compare quantum annealing machines to state-of-the-art classical codes with an approach that compares the performance of different algorithms and/or computing architectures on different classes of computationally hard tunable spin-glass instances. The advantage of such an approach lies in having to only compare the performance hit felt by a given algorithm and/or architecture when the instance complexity is increased. Furthermore, we propose a methodology that might not directly translate into the detection of quantum speedup, but might elucidate whether quantum annealing has a "`quantum advantage" over corresponding classical algorithms like simulated annealing. Our results on a 496 qubit D-Wave Two quantum annealing device are compared to recently-used state-of-the-art thermal simulated annealing codes.Comment: 14 pages, 8 figures, 3 tables, way too many reference

    Effect of Dilution on First Order Transitions: The Three Dimensional Three States Potts Model

    Get PDF
    We have studied numerically the effect of quenched site dilution on a first order phase transition in three dimensions. We have simulated the site diluted three states Potts model studying in detail the second order region of its phase diagram. We have found that the ν\nu exponent is compatible with the one of the three dimensional diluted Ising model whereas the η\eta exponent is definitely different.Comment: RevTex. 6 pages and 6 postscript figure
    corecore