13,961 research outputs found

    Mixing of two-level unstable systems

    Get PDF
    Unstable particles can be consistently described in the framework of quantum field theory. Starting from the full S-matrix amplitudes of B^+ --> (2 pi, 3 pi) l nu decays as examples in the energy region where the rho-omega resonances are dominating, we propose a prescription for the mixing of two quasi `physical' unstable states that differs from the one obtained from the diagonalization of the M -i*Gamma/2 non-hermitian hamiltonian. We discuss some important consequences for CP violation in the K_L - K_S system.Comment: 7 pages, Latex. A factor 1/2 removed from r.h.s. of Eqs. (12)-(15). Conclusions unchange

    Development of polymer network of phenolic and epoxies resins mixed with linseed oil: pilot study

    Get PDF
    Epoxy resin was mixed with phenolic resins in different percentages by weight. Composite 40/60 means the proportion by weight of epoxy resin is 40 percent. It was found that only composites 50/50 and 40/60 could be cured in ambient conditions. Dynamic mechanical analysis showed that only these two composites form interpenetrating polymer network. The addition of linseed oil to the two resins results also in the formation of interpenetrating network irrespective of proportion by weight of the resins; the mechanical properties will only be better when the percentage by weight of epoxy resin is higher; the aim of reducing cost and at the same time maintaining the mechanical properties cannot be fully achieved because epoxy resin is much more expensive than its counterpart

    Further remarks on isospin breaking in charmless semileptonic B decays

    Get PDF
    We consider the isospin breaking corrections to charmless semileptonic decays of B mesons. Both, the recently measured branching ratios of exclusive decays by the CLEO Collaboration and the end-point reion of the inclusive lepton spectrum in form factor models, can be affected by these corrections. Isospin corrections can affect the determination of |V_ub| from exclusive semileptonic B decays at a level comparable to present statistical uncertainties.Comment: Latex, 7 pages, 1 .ps figure, to appear in Phys. Rev.

    Seeking Quantum Speedup Through Spin Glasses: The Good, the Bad, and the Ugly

    Get PDF
    There has been considerable progress in the design and construction of quantum annealing devices. However, a conclusive detection of quantum speedup over traditional silicon-based machines remains elusive, despite multiple careful studies. In this work we outline strategies to design hard tunable benchmark instances based on insights from the study of spin glasses - the archetypal random benchmark problem for novel algorithms and optimization devices. We propose to complement head-to-head scaling studies that compare quantum annealing machines to state-of-the-art classical codes with an approach that compares the performance of different algorithms and/or computing architectures on different classes of computationally hard tunable spin-glass instances. The advantage of such an approach lies in having to only compare the performance hit felt by a given algorithm and/or architecture when the instance complexity is increased. Furthermore, we propose a methodology that might not directly translate into the detection of quantum speedup, but might elucidate whether quantum annealing has a "`quantum advantage" over corresponding classical algorithms like simulated annealing. Our results on a 496 qubit D-Wave Two quantum annealing device are compared to recently-used state-of-the-art thermal simulated annealing codes.Comment: 14 pages, 8 figures, 3 tables, way too many reference
    • …
    corecore