44 research outputs found

    Rapid phosphatidic acid accumulation in response to low temperature stress in Arabidopsis is generated through diacylglycerol kinase.

    Get PDF
    Phosphatidic acid (PtdOH) is emerging as an important signaling lipid in abiotic stress responses in plants. The effect of cold stress was monitored using (32)P-labeled seedlings and leaf discs of Arabidopsis thaliana. Low, non-freezing temperatures were found to trigger a very rapid (32)P-PtdOH increase, peaking within 2 and 5 min, respectively. In principle, PtdOH can be generated through three different pathways, i.e., (1) via de novo phospholipid biosynthesis (through acylation of lyso-PtdOH), (2) via phospholipase D hydrolysis of structural phospholipids, or (3) via phosphorylation of diacylglycerol (DAG) by DAG kinase (DGK). Using a differential (32)P-labeling protocol and a PLD-transphosphatidylation assay, evidence is provided that the rapid (32)P-PtdOH response was primarily generated through DGK. A simultaneous decrease in the levels of (32)P-PtdInsP, correlating in time, temperature dependency, and magnitude with the increase in (32)P-PtdOH, suggested that a PtdInsP-hydrolyzing PLC generated the DAG in this reaction. Testing T-DNA insertion lines available for the seven DGK genes, revealed no clear changes in (32)P-PtdOH responses, suggesting functional redundancy. Similarly, known cold-stress mutants were analyzed to investigate whether the PtdOH response acted downstream of the respective gene products. The hos1, los1, and fry1 mutants were found to exhibit normal PtdOH responses. Slight changes were found for ice1, snow1, and the overexpression line Super-ICE1, however, this was not cold-specific and likely due to pleiotropic effects. A tentative model illustrating direct cold effects on phospholipid metabolism is presented

    Clinical and functional consequences of C-terminal variants in MCT8

    Get PDF
    CONTEXT: Genetic variants in SLC16A2, encoding the thyroid hormone transporter MCT8, can cause intellectual and motor disability and abnormal serum thyroid function tests, known as MCT8 deficiency. The C-terminal domain of MCT8 is poorly conserved, which complicates prediction of the deleteriousness of variants in this region. We studied the functional consequences of 5 novel variants within this domain and their relation to the clinical phenotypes. METHODS: We enrolled male subjects with intellectual disability in whom genetic variants were identified in exon 6 of SLC16A2. The impact of identified variants was evaluated in transiently transfected cell lines and patient-derived fibroblasts. RESULTS: Seven individuals from 5 families harbored potentially deleterious variants affecting the C-terminal domain of MCT8. Two boys with clinical features considered atypical for MCT8 deficiency had a missense variant [c.1724A>G;p.(His575Arg) or c.1796A>G;p.(Asn599Ser)] that did not affect MCT8 function in transfected cells or patient-derived fibroblasts, challenging a causal relationship. Two brothers with classical MCT8 deficiency had a truncating c.1695delT;p.(Val566*) variant that completely inactivated MCT8 in vitro. The 3 other boys had relatively less-severe clinical features and harbored frameshift variants that elongate the MCT8 protein [c.1805delT;p.(Leu602HisfsTer680) and c.del1826-1835;p.(Pro609GlnfsTer676)] and retained ~50% residual activity. Additional truncating variants within transmembrane domain 12 were fully inactivating, whereas those within the intracellular C-terminal tail were tolerated. CONCLUSIONS: Variants affecting the intracellular C-terminal tail of MCT8 are likely benign unless they cause frameshifts that elongate the MCT8 protein. These findings provide clinical guidance in the assessment of the pathogenicity of variants within the C-terminal domain of MCT8

    The phenotype of Floating-Harbor syndrome: Clinical characterization of 52 individuals with mutations in exon 34 of SRCAP

    Get PDF
    Background: Floating-Harbor syndrome (FHS) is a rare condition characterized by short stature, delays in expressive language, and a distinctive facial appearance. Recently, heterozygous truncating mutations in SRCAP were determined to be disease-causing. With the availability of a DNA based confirmatory test, we set forth to define the clinical features of this syndrome. Methods and results. Clinical information on fifty-two individuals with SRCAP mutations was collected using standardized questionnaires. Twenty-four males and twenty-eight females were studied with ages ranging from

    From genotype to phenotype: clinical syndrome delineation in the era of genomics

    Get PDF
    Contains fulltext : 159473.pdf (publisher's version ) (Open Access)RU Radboud Universiteit, 2 september 2016Promotores : Brunner, H.G., Knoers-van Slobbe, V.V.A.M. Co-promotor : Bongers, M.H.F

    The salt stress-induced LPA response in Chlamydomonas is produced via PLA(2) hydrolysis of DGK-generated phosphatidic acid

    No full text
    The unicellular green alga Chlamydomonas has frequently been used as a eukaryotic model system to study intracellular phospholipid signaling pathways in response to environmental stresses. Earlier, we found that hypersalinity induced a rapid increase in the putative lipid second messenger, phosphatidic acid (PA), which was suggested to be generated via activation of a phospholipase D (PLD) pathway and the combined action of a phospholipase C/diacylglycerol kinase (PLC/DGK) pathway. Lysophosphatidic acid (LPA) was also increased and was suggested to reflect a phospholipase A(2) (PLA(2)) activity based on pharmacological evidence. The question of PA's and LPA's origin is, however, more complicated, especially as both function as precursors in the biosynthesis of phospho- and galactolipids. To address this complexity, a combination of fatty acid-molecular species analysis and in vivo (32)P-radiolabeling was performed. Evidence is provided that LPA is formed from a distinct pool of PA characterized by a high α-linolenic acid (18:3n-3) content. This molecular species was highly enriched in the polyphosphoinositide fraction, which is the substrate for PLC to form diacylglycerol. Together with differential (32)P-radiolabeling studies and earlier PLD-transphosphatidylation and PLA(2)-inhibitor assays, the data were consistent with the hypothesis that the salt-induced LPA response is primarily generated through PLA(2)-mediated hydrolysis of DGK-generated PA and that PLD or de novo synthesis [via endoplasmic reticulum - or plastid-localized routes] is not a major contributor

    Use of phospholipase A2 for the production of lysophospholipids

    No full text
    Biological lipid extracts often contain small amounts of lysophospholipids (LPLs). Since different functions are emerging for LPLs in lipid metabolism and signalling, there is need for a reliable and cost-effective method for their identification. For this purpose, authentic LPL standards have to be synthesized from phosphoglycerides by PLA2 digestion in vitro. PLA2 specifically hydrolyzes the fatty acid ester linkage in the sn-2-position of phospholipids to liberate sn-2-linked fatty acids and the corresponding LPL. Due to this specificity, the reaction is also useful to analyze the positional distribution of fatty acids within membrane phospholipids. This chapter describes the in vitro generation of LPLs from diacyl-phosphoglycerides and their TLC analysis

    Diacylglycerol kinase

    No full text

    Diacylglycerol kinase

    No full text

    Distinguishing phosphatidic acid pools from de novo synthesis, PLD, and DGK

    No full text
    In plants, phosphatidic acid (PA) functions as a metabolic precursor in the biosynthesis of glycerolipids, but it also acts as a key signaling lipid in the response to environmental stress conditions (Testerink and Munnik, J Exp Bot 62:2349-2361, 2011). In vivo (32)P-radiolabeling assays have shown the level of PA to increase within seconds/minutes of exposure to a stimulus. This response can be due to the activity of diacylglycerol kinase (DGK) and/or phospholipase D (PLD). A method is described to investigate which of the pathways is responsible for PA accumulation under a particular stress condition. First, a differential (32)P-radiolabeling protocol is used to discriminate (32)P-PA pools that are rapidly labeled versus those requiring long prelabeling times, reflecting DGK and PLD activities, respectively. Second, to specifically monitor the contribution of PLD, a transphosphatidylation assay is applied, which makes use of the artificial lipid phosphatidylbutanol as an in vivo marker of PLD activity
    corecore