5,249 research outputs found

    Electronic oscillations in paired polyacetylene chains

    Full text link
    An interacting pair of polyacetylene chains are initially modeled as a couple of undimerized polymers described by a Hamiltonian based on the tight-binding model representing the electronic behavior along the linear chain, plus a Dirac's potential double well representing the interaction between the chains. A theoretical field formalism is employed, and we find that the system exhibits a gap in its energy band due to the presence of a mass-matrix term in the Dirac's Lagrangian that describes the system. The Peierls instability is introduced in the chains by coupling a scalar field to the fermions of the theory via spontaneous symmetry breaking, to obtain a kink-like soliton, which separates two vacuum regions, i.e., two spacial configurations (enantiomers) of the each molecule. Since that mass-matrix and the pseudo-spin operator do not commute in the same quantum representation, we demonstrate that there is a particle oscillation phenomenon with a periodicity equivalent to the Bloch oscillations.Comment: 4 pages, 1 figure.to appear in Solid State Communication

    Casimir Effect in the Rainbow Einstein's Universe

    Full text link
    In the present paper we investigate the effects caused by the modification of the dispersion relation obtained by solving the Klein-Gordon equation in the closed Einstein's universe in the context of rainbow's gravity models. Thus, we analyse how the quantum vacuum fluctuations of the scalar field are modified when compared with the results obtained in the usual General Relativity scenario. The regularization, and consequently the renormalization, of the vacuum energy is performed adopting the Epstein-Hurwitz and Riemann's zeta functions.Comment: 15 pages, 1 figure. To appear in Europhysics Letter

    On Effective Spacetime Dimension in the Ho\v{r}ava-Lifshitz Gravity

    Get PDF
    In this manuscript we explicitly compute the effective dimension of spacetime in some backgrounds of Ho\v{r}ava-Lifshitz (H-L) gravity. For all the cases considered, the results are compatible with a dimensional reduction of the spacetime to d+1=2d+1=2, at high energies (ultraviolet limit), which is confirmed by other quantum gravity approaches, as well as to d+1=4d+1=4, at low energies (infrared limit). This is obtained by computing the free energy of massless scalar and gauge fields. We find that the only effect of the background is to change the proportionality constant between the internal energy and temperature. Firstly, we consider both the non-perturbative and perturbative models involving the matter action, without gravitational sources but with manifest time and space symmetry breaking, in order to calculate modifications in the Stephan-Boltzmann law. When gravity is taken into account, we assume a scenario in which there is a spherical source with mass MM and radius RR in thermal equilibrium with radiation, and consider the static and spherically symmetric solution of the H-L theory found by Kehagias-Sfetsos (K-S), in the weak and strong field approximations. As byproducts, for the weak field regime, we used the current uncertainty of the solar radiance measurements to establish a constraint on the ω\omega free parameter of the K-S solution. We also calculate the corrections, due to gravity, to the recently predicted attractive force that black bodies exert on nearby neutral atoms and molecules.Comment: references adde

    Photon mass as a probe to extra dimensions

    Get PDF
    In this manuscript we show that the geometrical localization mechanism implies a four dimensional mass for the photon. The consistence of the model provides a mass given exactly by mγ=R/4m_{\gamma}=\sqrt{R}/4 where RR is the Ricci scalar. As a consequence, the cosmological photon has a mass related to the vacuum solution of the Einstein equation. At the present age of the universe we have a dS vacuum with R=4ΛR=4\Lambda, where Lambda is a positive cosmological constant. With this we find that mγ≈2×10−69m_{\gamma}\approx 2\times 10^{-69} kg, which is below the present experimental upper bounds, and such correction may be observed in the next years with more precise measurements. By considering the value of RR inside some astrophysical sources and environments we find that the bound is also satisfied. The experimental verification of this mass, beyond pointing to the existence of extra dimensions, would imply in a fundamental change in cosmology, astrophysics and in particle physics since the same mechanism is valid for non-abelian gauge fields.Comment: 4 page
    • …
    corecore