3,317 research outputs found

    Carbon nanotube: a low-loss spin-current waveguide

    Full text link
    We demonstrate with a quantum-mechanical approach that carbon nanotubes are excellent spin-current waveguides and are able to carry information stored in a precessing magnetic moment for long distances with very little dispersion and with tunable degrees of attenuation. Pulsed magnetic excitations are predicted to travel with the nanotube Fermi velocity and are able to induce similar excitations in remote locations. Such an efficient way of transporting magnetic information suggests that nanotubes are promising candidates for memory devices with fast magnetization switchings

    Localization lengths of ultrathin disordered gold and silver nanowires

    Full text link
    The localization lengths of ultrathin disordered Au and Ag nanowires are estimated by calculating the wire conductances as functions of wire lengths. We study Ag and Au monoatomic linear chains, and thicker Ag wires with very small cross sections. For the monoatomic chains we consider two types of disorder: bounded random fluctuations of the interatomic distances, and the presence of random substitutional impurities. The effect of impurity atoms on the nanowire conductance is much stronger. Our results show that electrical transport in ultrathin disordered wires may occur in the strong localization regime, and with relatively small amounts of disorder the localization lengths may be rather small. The localization length dependence on wire thickness is investigated for Ag nanowires with different impurity concentrations.Comment: 6 pages, postscript figures included, submitted to PR

    Spin waves in ultrathin ferromagnetic overlayers

    Full text link
    The influence of a non-magnetic metallic substrate on the spin wave excitations in ultrathin ferromagnetic overlayers is investigated for different crystalline orientations. We show that spin wave dumping in these systems occur due to the tunneling of holes from the substrate into the overlayer, and that the spin wave energies may be considerably affected by the exchange coupling mediated by the substrate.Comment: RevTeX 4, 7 pages, 5 figures; submitted to Phys. Rev.

    4,5-Dibromo-2,7-di-tert-butyl-9,9-dimethyl-9H-thioxanthene

    Get PDF
    In the title compound, C23H28Br2S, the thioxanthene unit is twisted, showing a dihedral angle of 29.3 (5)° between the benzene rings. When projected along [001], the packing shows two types of channels. The crystal studied was a racemic twin
    • …
    corecore