14 research outputs found

    Natural Occurrence of a Strain of Cowpea Mild Mottle Virus on Groundnut (Arachis hypogaea) in India)

    Get PDF
    Vein-clearing followed by downward rolling and necrosis of leaves and severe stunting of groundnut (Arachis hypogaea) plants were caused by cowpea mild mottle virus (CMMV). The virus was readily transmitted by mechanical sap inoculations to groundnut and to 10 plant species belonging to Leguminosae, Chenopodiaceae and Solanaceae. Chenopodium quinoa and Beta vulgaris were good diagnostic hosts. Diseased sap remained infective at 10–3 but not 10–4, when stored 8 to 9 days at 25 °C; for 10min at 75 °C but not 80°C. In limited tests, virus was not seed-transmitted m groundnut or soybean. Virus was transmitted by Bemisia tabaci but not by Aphis craccivora or Myzus persicae. An antiserum for CMMV was produced and virus was serologically related to CMMV reported on cowpea and groundnut crinkle virus (GCV) from West Africa. Employing carbon diffraction grating replica as a standard the modal length of virus particles to be 610 nm. Infected cells contained large number of virus particles associated with endoplasmic reticulum

    The Complete Genome Sequence of the Pathogenic Intestinal Spirochete Brachyspira pilosicoli and Comparison with Other Brachyspira Genomes

    Get PDF
    Background: The anaerobic spirochete Brachyspira pilosicoli colonizes the large intestine of various species of birds and mammals, including humans. It causes ''intestinal spirochetosis'', a condition characterized by mild colitis, diarrhea and reduced growth. This study aimed to sequence and analyse the bacterial genome to investigate the genetic basis of its specialized ecology and virulence. Methodology/Principal Findings: The genome of B. pilosicoli 95/1000 was sequenced, assembled and compared with that of the pathogenic Brachyspira hyodysenteriae and a near-complete sequence of Brachyspira murdochii. The B. pilosicoli genome was circular, composed of 2,586,443 bp with a 27.9 mol% G+C content, and encoded 2,338 genes. The three Brachyspira species shared 1,087 genes and showed evidence of extensive genome rearrangements. Despite minor differences in predicted protein functional groups, the species had many similar features including core metabolic pathways. Genes distinguishing B. pilosicoli from B. hyodysenteriae included those for a previously undescribed bacteriophage that may be useful for genetic manipulation, for a glycine reductase complex allowing use of glycine whilst protecting from oxidative stress, and for aconitase and related enzymes in the incomplete TCA cycle, allowing glutamate synthesis and function of the cycle during oxidative stress. B. pilosicoli had substantially fewer methyl-accepting chemotaxis genes than B. hyodysenteriae and hence these species are likely to have different chemotactic responses that may help to explain their different host range and colonization sites. B. pilosicoli lacked the gene for a new putative hemolysin identified in B. hyodysenteriae WA1. Both B. pilosicoli and B. murdochii lacked the rfbBADC gene cluster found on the B. hyodysenteriae plasmid, and hence were predicted to have different lipooligosaccharide structures. Overall, B. pilosicoli 95/1000 had a variety of genes potentially contributing to virulence. Conclusions/Significance: The availability of the complete genome sequence of B. pilosicoli 95/1000 will facilitate functional genomics studies aimed at elucidating host-pathogen interactions and virulence

    Certain canine weakly beta-hemolytic intestinal spirochetes are phenotypically and genotypically related to spirochetes associated with human and porcine intestinal spirochetosis.

    Get PDF
    Four canine weakly beta-hemolytic intestinal spirochetes associated with intestinal spirochetosis (IS-associated WBHIS) were compared with IS-associated human and porcine WBHIS and the type species for Serpulina hyodysenteriae and S. innocens by using phenotypic and genotypic parameters. The IS-associated canine, human, and porcine WBHIS belonged to a phyletic group distinct from but related to previously described Serpulina type species

    Canine Intestinal Spirochetes Consist of Serpulina pilosicoli and a Newly Identified Group Provisionally Designated “Serpulina canis” sp. nov.

    Get PDF
    The spirochetes inhabiting the large intestines of humans and animals consist of a diverse group of related organisms. Intestinal spirochetosis caused by Serpulina pilosicoli is a newly recognized enteric disease of human beings and animals with potential public health significance. The purpose of this study was to determine the species identity of canine intestinal spirochetes by comparing 30 isolates obtained from dogs in Australia (n = 25) and the United States (n = 5) with reference strains representing Serpulina species and Brachyspira aalborgi, by phenotypic and genetically based typing methods. All of the canine isolates were indole negative and produced a weak β-hemolysis when cultured anaerobically on agar medium containing blood. Four isolates were identified as S. pilosicoli by 16S rRNA-specific PCR assays, rRNA gene restriction fragment length polymorphism or ribotyping, and multilocus enzyme electrophoresis. The remaining 26 isolates formed a cluster related to porcine Serpulina innocens as determined by multilocus enzyme electrophoresis but had a unique ribotype pattern. The data suggested the existence of a novel Serpulina species, provisionally designated “Serpulina canis,” colonizing the intestines of dogs
    corecore