25 research outputs found

    Cardiac phenotype in mouse models of systemic autoimmunity.

    Get PDF
    Patients suffering from systemic autoimmune diseases are at significant risk of cardiovascular complications. This can be due to systemically increased levels of inflammation leading to accelerated atherosclerosis, or due to direct damage to the tissues and cells of the heart. Cardiac complications include an increased risk of myocardial infarction, myocarditis and dilated cardiomyopathy, valve disease, endothelial dysfunction, excessive fibrosis, and bona fide autoimmune-mediated tissue damage by autoantibodies or auto-reactive cells. There is, however, still a considerable need to better understand how to diagnose and treat cardiac complications in autoimmune patients. A range of inducible and spontaneous mouse models of systemic autoimmune diseases is available for mechanistic and therapeutic studies. For this Review, we systematically collated information on the cardiac phenotype in the most common inducible, spontaneous and engineered mouse models of systemic lupus erythematosus, rheumatoid arthritis and systemic sclerosis. We also highlight selected lesser-known models of interest to provide researchers with a decision framework to choose the most suitable model for their study of heart involvement in systemic autoimmunity

    Immunomodulatory interventions in myocardial infarction and heart failure: a systematic review of clinical trials and meta-analysis of IL-1 inhibition

    Get PDF
    Following a myocardial infarction (MI), the immune system helps to repair ischaemic damage and restore tissue integrity, but excessive inflammation has been implicated in adverse cardiac remodelling and development towards heart failure (HF). Pre-clinical studies suggest that timely resolution of inflammation may help prevent HF development and progression. Therapeutic attempts to prevent excessive post-MI inflammation in patients have included pharmacological interventions ranging from broad immunosuppression to immunomodulatory approaches targeting specific cell types or factors with the aim to maintain beneficial aspects of the early post-MI immune response. These include the blockade of early initiators of inflammation including reactive oxygen species and complement, inhibition of mast cell degranulation and leucocyte infiltration, blockade of inflammatory cytokines, and inhibition of adaptive B and T-lymphocytes. Herein, we provide a systematic review on post-MI immunomodulation trials and a meta-analysis of studies targeting the inflammatory cytokine Interleukin-1. Despite an enormous effort into a significant number of clinical trials on a variety of targets, a striking heterogeneity in study population, timing and type of treatment, and highly variable endpoints limits the possibility for meaningful meta-analyses. To conclude, we highlight critical considerations for future studies including (i) the therapeutic window of opportunity, (ii) immunological effects of routine post-MI medication, (iii) stratification of the highly diverse post-MI patient population, (iv) the potential benefits of combining immunomodulatory with regenerative therapies, and at last (v) the potential side effects of immunotherapies

    Transcriptional activation of Jun and Fos members of the AP-1 complex is a conserved signature of immune aging that contributes to inflammaging.

    Get PDF
    Diverse mouse strains have different health and life spans, mimicking the diversity among humans. To capture conserved aging signatures, we studied long-lived C57BL/6J and short-lived NZO/HILtJ mouse strains by profiling transcriptomes and epigenomes of immune cells from peripheral blood and the spleen from young and old mice. Transcriptional activation of the AP-1 transcription factor complex, particularly Fos, Junb, and Jun genes, was the most significant and conserved aging signature across tissues and strains. ATAC-seq data analyses showed that the chromatin around these genes was more accessible with age and there were significantly more binding sites for these TFs with age across all studied tissues, targeting pro-inflammatory molecules including Il6. Age-related increases in binding sites of JUN and FOS factors were also conserved in human peripheral blood ATAC-seq data. Single-cell RNA-seq data from the mouse aging cell atlas Tabula Muris Senis showed that the expression of these genes increased with age in B, T, NK cells, and macrophages, with macrophages from old mice expressing these molecules more abundantly than other cells. Functional data showed that upon myeloid cell activation via poly(I:C), the levels of JUN protein and its binding activity increased more significantly in spleen cells from old compared to young mice. In addition, upon activation, old cells produced more IL6 compared to young cells. In sum, we showed that the aging-related transcriptional activation of Jun and Fos family members in AP-1 complex is conserved across immune tissues and long- and short-living mouse strains, possibly contributing to increased inflammation with age

    Loss of TRP53 (p53) accelerates tumorigenesis and changes the tumor spectrum of SJL/J mice.

    Get PDF
    Known as the guardian of the genome, transformation-related protein 53 (TRP53) is a well -known tumor suppressor. Here, we describe a novel TRP53 deficient mouse model on a tumor prone background-SJL/J mice. The absence of TRP53 (TRP53 nullizygosity) leads to a shift in the tumor spectrum from a non-Hodgkin\u27s-like disease to thymic lymphomas and testicular teratomas at a very rapid tumor onset averaging ~12 weeks of age. In haplotype studies, comparing tumor prone versus tumor resistant Trp53 null mouse strains, we found that other tumor suppressor, DNA repair and/or immune system genes modulate tumor incidence in TRP53 null strains, suggesting that even a strong tumor suppressor such as TRP53 is modulated by genetic background. Due to their rapid development of tumors, the SJL/J TRP53 null mice generated here can be used as an efficient chemotherapy or immunotherapy screening mouse model

    Type 2 MI induced by a single high dose of isoproterenol in C57BL/6J mice triggers a persistent adaptive immune response against the heart.

    Get PDF
    Heart failure is the common final pathway of several cardiovascular conditions and a major cause of morbidity and mortality worldwide. Aberrant activation of the adaptive immune system in response to myocardial necrosis has recently been implicated in the development of heart failure. The ß-adrenergic agonist isoproterenol hydrochloride is used for its cardiac effects in a variety of different dosing regimens with high doses causing acute cardiomyocyte necrosis. To assess whether isoproterenol-induced cardiomyocyte necrosis triggers an adaptive immune response against the heart, we treated C57BL/6J mice with a single intraperitoneal injection of isoproterenol. We confirmed tissue damage reminiscent of human type 2 myocardial infarction. This is followed by an adaptive immune response targeting the heart as demonstrated by the activation of T cells, the presence of anti-heart auto-antibodies in the serum as late as 12 weeks after initial challenge and IgG deposition in the myocardium. All of these are hallmark signs of an established autoimmune response. Adoptive transfer of splenocytes from isoproterenol-treated mice induces left ventricular dilation and impairs cardiac function in healthy recipients. In summary, a single administration of a high dose of isoproterenol is a suitable high-throughput model for future studies of the pathological mechanisms of anti-heart autoimmunity and to test potential immunomodulatory therapeutic approaches

    Immunomodulatory interventions in myocardial infarction and heart failure: a systematic review of clinical trials and meta-analysis of IL-1 inhibition.

    Get PDF
    Following a myocardial infarction (MI), the immune system helps to repair ischaemic damage and restore tissue integrity, but excessive inflammation has been implicated in adverse cardiac remodelling and development towards heart failure (HF). Pre-clinical studies suggest that timely resolution of inflammation may help prevent HF development and progression. Therapeutic attempts to prevent excessive post-MI inflammation in patients have included pharmacological interventions ranging from broad immunosuppression to immunomodulatory approaches targeting specific cell types or factors with the aim to maintain beneficial aspects of the early post-MI immune response. These include the blockade of early initiators of inflammation including reactive oxygen species and complement, inhibition of mast cell degranulation and leucocyte infiltration, blockade of inflammatory cytokines, and inhibition of adaptive B and T-lymphocytes. Herein, we provide a systematic review on post-MI immunomodulation trials and a meta-analysis of studies targeting the inflammatory cytokine Interleukin-1. Despite an enormous effort into a significant number of clinical trials on a variety of targets, a striking heterogeneity in study population, timing and type of treatment, and highly variable endpoints limits the possibility for meaningful meta-analyses. To conclude, we highlight critical considerations for future studies including (i) the therapeutic window of opportunity, (ii) immunological effects of routine post-MI medication, (iii) stratification of the highly diverse post-MI patient population, (iv) the potential benefits of combining immunomodulatory with regenerative therapies, and at last (v) the potential side effects of immunotherapies

    Characterization of acute TLR-7 agonist-induced hemorrhagic myocarditis in mice by multiparametric quantitative cardiac magnetic resonance imaging.

    Get PDF
    Hemorrhagic myocarditis is a potentially fatal complication of excessive levels of systemic inflammation. It has been reported in viral infection, but is also possible in systemic autoimmunity. Epicutaneous treatment of mice with the Toll-like receptor 7 (TLR-7) agonist Resiquimod induces auto-antibodies and systemic tissue damage, including in the heart, and is used as an inducible mouse model of systemic lupus erythematosus (SLE). Here, we show that overactivation of the TLR-7 pathway of viral recognition by Resiquimod treatment of CFN mice induces severe thrombocytopenia and internal bleeding, which manifests most prominently as hemorrhagic myocarditis. We optimized a cardiac magnetic resonance (CMR) tissue mapping approach for the in vivo detection of diffuse infiltration, fibrosis and hemorrhages using a combination of T1, T2 and T2 * relaxation times, and compared results with ex vivo histopathology of cardiac sections corresponding to CMR tissue maps. This allowed detailed correlation between in vivo CMR parameters and ex vivo histopathology, and confirmed the need to include T2 * measurements to detect tissue iron for accurate interpretation of pathology associated with CMR parameter changes. In summary, we provide detailed histological and in vivo imaging-based characterization of acute hemorrhagic myocarditis as an acute cardiac complication in the mouse model of Resiquimod-induced SLE, and a refined CMR protocol to allow non-invasive longitudinal in vivo studies of heart involvement in acute inflammation. We propose that adding T2 * mapping to CMR protocols for myocarditis diagnosis improves diagnostic sensitivity and interpretation of disease mechanisms.This article has an associated First Person interview with the first author of the paper

    Enhancing the efficacy of glycolytic blockade in cancer cells via RAD51 inhibition.

    Get PDF
    Targeting the early steps of the glycolysis pathway in cancers is a well-established therapeutic strategy; however, the doses required to elicit a therapeutic effect on the cancer can be toxic to the patient. Consequently, numerous preclinical and clinical studies have combined glycolytic blockade with other therapies. However, most of these other therapies do not specifically target cancer cells, and thus adversely affect normal tissue. Here we first show that a diverse number of cancer models - spontaneous, patient-derived xenografted tumor samples, and xenografted human cancer cells - can be efficiently targeted by 2-deoxy-D-Glucose (2DG), a well-known glycolytic inhibitor. Next, we tested the cancer-cell specificity of a therapeutic compound using the MEC1 cell line, a chronic lymphocytic leukemia (CLL) cell line that expresses activation induced cytidine deaminase (AID). We show that MEC1 cells, are susceptible to 4,4\u27-Diisothiocyano-2,2\u27-stilbenedisulfonic acid (DIDS), a specific RAD51 inhibitor. We then combine 2DG and DIDS, each at a lower dose and demonstrate that this combination is more efficacious than fludarabine, the current standard- of- care treatment for CLL. This suggests that the therapeutic blockade of glycolysis together with the therapeutic inhibition of RAD51-dependent homologous recombination can be a potentially beneficial combination for targeting AID positive cancer cells with minimal adverse effects on normal tissue. IMPLICATIONS: Combination therapy targeting glycolysis and specific RAD51 function shows increased efficacy as compared to standard of care treatments in leukemias

    Cross-Priming Dendritic Cells Exacerbate Immunopathology After Ischemic Tissue Damage in the Heart.

    Get PDF
    BACKGROUND: Ischemic heart disease is a leading cause of heart failure and despite advanced therapeutic options, morbidity and mortality rates remain high. Although acute inflammation in response to myocardial cell death has been extensively studied, subsequent adaptive immune activity and anti-heart autoimmunity may also contribute to the development of heart failure. After ischemic injury to the myocardium, dendritic cells (DC) respond to cardiomyocyte necrosis, present cardiac antigen to T cells, and potentially initiate a persistent autoimmune response against the heart. Cross-priming DC have the ability to activate both CD4 METHODS: We induced type 2 myocardial infarction-like ischemic injury in the heart by treatment with a single high dose of the β-adrenergic agonist isoproterenol. We characterized the DC population in the heart and mediastinal lymph nodes and analyzed long-term cardiac immunopathology and functional decline in wild type and RESULTS: A diverse DC population, including cross-priming DC, is present in the heart and activated after ischemic injury. CONCLUSION: Activation of cytotoxic CD

    Cardiac phenotype in mouse models of systemic autoimmunity

    Get PDF
    Patients suffering from systemic autoimmune diseases are at significant risk of cardiovascular complications. This can be due to systemically increased levels of inflammation leading to accelerated atherosclerosis, or due to direct damage to the tissues and cells of the heart. Cardiac complications include an increased risk of myocardial infarction, myocarditis and dilated cardiomyopathy, valve disease, endothelial dysfunction, excessive fibrosis, and bona fide autoimmune-mediated tissue damage by autoantibodies or auto-reactive cells. There is, however, still a considerable need to better understand how to diagnose and treat cardiac complications in autoimmune patients. A range of inducible and spontaneous mouse models of systemic autoimmune diseases is available for mechanistic and therapeutic studies. For this Review, we systematically collated information on the cardiac phenotype in the most common inducible, spontaneous and engineered mouse models of systemic lupus erythematosus, rheumatoid arthritis and systemic sclerosis. We also highlight selected lesser-known models of interest to provide researchers with a decision framework to choose the most suitable model for their study of heart involvement in systemic autoimmunity
    corecore