26 research outputs found

    Evaluation of therapeutic properties of fermented vegetables extract (OM-X®) in the model of colitis induced by Citrobacter rodentium in mice

    Get PDF
    AbstractInfection of mice with Citrobacter rodentium serves as a model to study human intestinal infections. C. rodentium infection leads to increased production of inflammatory cytokines, immune cell infiltration and damage to the gut barrier. We used this model of colitis to evaluate the therapeutic properties of OM-X®, an extract prepared by fermentation of vegetables, seaweeds, fruits and mushrooms. Administration of OM-X® to C. rodentium-infected mice reduced damage to the intestinal epithelium, lowered inflammation scores, increased IL-10 expression and maintained FoxP3 gene expression. OM-X® also partially prevented bacterial translocation, increased expression of tight junction genes and increased proliferation of epithelial cells. PCR analysis of stool samples showed that OM-X® significantly reduced the populations of bacteria harboring buk gene (mostly Clostridium species). It is suggested that alterations of microbiota composition, following OM-X® consumption, contribute to protection against infection and epithelial damage, and lead to an increased expression of anti-inflammatory cytokines

    Anti-CRISPR-mediated control of gene editing and synthetic circuits in eukaryotic cells.

    Get PDF
    Repurposed CRISPR-Cas molecules provide a useful tool set for broad applications of genomic editing and regulation of gene expression in prokaryotes and eukaryotes. Recent discovery of phage-derived proteins, anti-CRISPRs, which serve to abrogate natural CRISPR anti-phage activity, potentially expands the ability to build synthetic CRISPR-mediated circuits. Here, we characterize a panel of anti-CRISPR molecules for expanded applications to counteract CRISPR-mediated gene activation and repression of reporter and endogenous genes in various cell types. We demonstrate that cells pre-engineered with anti-CRISPR molecules become resistant to gene editing, thus providing a means to generate "write-protected" cells that prevent future gene editing. We further show that anti-CRISPRs can be used to control CRISPR-based gene regulation circuits, including implementation of a pulse generator circuit in mammalian cells. Our work suggests that anti-CRISPR proteins should serve as widely applicable tools for synthetic systems regulating the behavior of eukaryotic cells

    The role of AmeloD in tooth development

    Get PDF
    The development of ectodermal organs, such as teeth, requires epithelial–mesenchymal interactions. Basic helix–loop–helix (bHLH) transcription factors regulate various aspects of tissue development, and we have previously identified a bHLH transcription factor, AmeloD, from a tooth germ cDNA library. Here, we provide both in vitro and in vivo evidence that AmeloD is important in tooth development. We created AmeloD-knockout (KO) mice to identify the in vivo functions of AmeloD that are critical for tooth morphogenesis. We found that AmeloD-KO mice developed enamel hypoplasia and small teeth because of increased expression of E-cadherin in inner enamel epithelial (IEE) cells, and it may cause inhibition of the cell migration. We used the CLDE dental epithelial cell line to conduct further mechanistic analyses to determine whether AmeloD overexpression in CLDE cells suppresses E-cadherin expression and promotes cell migration. Knockout of epiprofin (Epfn), another transcription factor required for tooth morphogenesis and development, and analysis of AmeloD expression and deletion revealed that AmeloD also contributed to multiple tooth formation in Epfn-KO mice by promoting the invasion of dental epithelial cells into the mesenchymal region. Thus, AmeloD appears to play an important role in tooth morphogenesis by modulating E-cadherin and dental epithelial–mesenchymal interactions. These findings provide detailed insights into the mechanism of ectodermal organ development

    Reference values for the locomotive syndrome risk test quantifying mobility of 8681 adults aged 20–89 years: A cross-sectional nationwide study in Japan

    Get PDF
    Background The locomotive syndrome risk test was developed to quantify the decrease in mobility among adults, which could eventually lead to disability. The purpose of this study was to establish reference values for the locomotive syndrome risk test for adults and investigate the influence of age and sex. Methods We analyzed 8681 independent community dwellers (3607 men, 5074 women). Data pertaining to locomotive syndrome risk test (the two-step test, the stand-up test, and the 25-question geriatric locomotive function scale [GLFS-25]) scores were collected from seven administrative areas of Japan. Results The reference values of the three test scores were generated and all three test scores gradually decreased among young-to-middle-aged individuals and rapidly decreased in individuals aged over 60 years. The stand-up test score began decreasing significantly from the age of 30 years. The trajectories of decrease in the two-step test score with age was slightly different between men and women especially among the middle-aged individuals. The two physical test scores were more sensitive to aging than the self-reported test score. Conclusion The reference values generated in this study could be employed to determine whether an individual has mobility comparable to independent community dwellers of the same age and sex

    Two cases of childhood absence epilepsy who showed seizure disappearance after ethosuximide drug eruption

    No full text
    Abstract Background Recent studies suggest potential roles of immune response in the pathophysiology of epilepsy. Anti-seizure medications (ASMs) are known to have side effects of drug eruption caused by immune responses. A few reports in adults have demonstrated disappearance of seizures after an ASM drug eruption episode. In this paper, we described 2 cases of childhood absence epilepsy (CAE) who showed seizure disappearance after ethosuximide (ESM) drug eruption, suggesting the possibility that the epilepsy disappears due to immune responses to ASM. Case presentation Case 1 was an 8-year-old girl diagnosed with CAE. She was treated with valproate acid (VPA) initially, and then ESM was administered as an additional treatment. Her epileptic seizure disappeared 4 days after initiation of ESM. However, drug eruption appeared 1 week after the administration of ESM. Even after discontinuation of ESM administration, she maintains no seizure after the drug eruption. Case 2 was a 5-year-old boy diagnosed as CAE. He was treated with VPA initially, and ESM was administered additionally. Drug eruption appeared 1 month after the administration of ESM. Even after ESM was terminated, he maintained seizure freedom after the appearance of eruption. Conclusions Epileptic seizures may have been suppressed due to the immune responses caused by ASM eruption. Further studies are needed to elucidate the pathophysiologic effects of drug eruption on epilepsy through immune responses

    Durable CRISPR-Based Epigenetic Silencing

    No full text
    Development of CRISPR-based epigenome editing tools is important for the study and engineering of biological behavior. Here, we describe the design of a reporter system for quantifying the ability of CRISPR epigenome editors to produce a stable gene repression. We characterize the dynamics of durable gene silencing and reactivation, as well as the induced epigenetic changes of this system. We report the creation of single-protein CRISPR constructs bearing combinations of three epigenetic editing domains, termed KAL, that can stably repress the gene expression. This system should allow for the development of novel epigenome editing tools which will be useful in a wide array of biological research and engineering applications
    corecore