7 research outputs found

    Radiographic Outcomes of Adult Spinal Deformity Correction : A Critical Analysis of Variability and Failures Across Deformity Patterns

    No full text
    International audienceStudy Design: Multicenter, prospective, consecutive, surgical case series from the International Spine Study Group.Objectives: To evaluate the effectiveness of surgical treatment in restoring spinopelvic (SP) alignment.Summary of Background Data: Pain and disability in the setting of adult spinal deformity have been correlated with global coronal alignment (GCA), sagittal vertical axis (SVA), pelvic incidence/lumbar lordosis mismatch (PI-LL), and pelvic tilt (PT). One of the maingoals of surgery for adult spinal deformity is to correct these parameters to restore harmonious SP alignment.Methods: Inclusion criteria were operative patients (age greater than 18 years) with baseline (BL) and 1-year full-length X-rays. Thoracic and thoracolumbar Cobb angle and previous mentioned parameters were calculated. Each parameter at BL and 1 year was categorized as either pathological or normal. Pathologic limits were: Cobb greater than 30 , GCA greater than 40 mm, SVA greater than 40 mm, PI-LL greater than 10 , and PT greater than 20 . According to thresholds, corrected or worsened alignment groups of patients were identified and overall radiographic effectiveness of procedure was evaluated by combining the results from the coronal and sagittal planes

    Intermediate-term clinical and radiographic outcomes with less invasive adult spinal deformity surgery: patients with a minimum follow-up of 4 years.

    No full text
    BACKGROUND: Little information exists regarding longer-term outcomes with minimally invasive spine surgery (MISS), particularly regarding long-segment and deformity procedures. We aimed to evaluate intermediate-term outcomes of MISS for adult spinal deformity (ASD). METHODS: This retrospective review of a prospectively collected multicenter database examined outcomes at 4 or more years following circumferential MIS (cMIS) or hybrid (HYB) surgery for ASD. A total of 53 patients at 8 academic centers satisfied the following inclusion criteria: age \u3e 18 years and coronal Cobb \u3e 20°, pelvic incidence-lumbar lordosis (PI-LL) \u3e 10°, or sagittal vertical axis (SVA) \u3e 5 cm. RESULTS: Radiographic outcomes demonstrated improvements of PI-LL from 16.8° preoperatively to 10.8° and coronal Cobb angle from 38° preoperatively to 18.2° at 4 years. The incidence of complications over the follow-up period was 56.6%. A total of 21 (39.6%) patients underwent reoperation in the thoracolumbar spine, most commonly for adjacent level disease or proximal junctional kyphosis, which occurred in 11 (20.8%) patients. Mean Oswestry Disability Index (ODI) at baseline and years 1 through 4 were 49.9, 33.1, 30.2, 32.7, and 35.0, respectively. The percentage of patients meeting minimal clinically important difference (MCID) (defined as 12% or more from baseline) decreased over time, with leg pain reduction more durable than back pain reduction. CONCLUSIONS: Intermediate-term clinical and radiographic improvement following MISS for ASD is sustained, but extent of improvement lessens over time. Outcome variability exists within a subset of patients not meeting MCID, which increases over time after year two. Loss of improvement over time was more notable in back than leg pain. However, average ODI improvement meets MCID at 4 years after MIS ASD surgery

    Does MIS Surgery Allow for Shorter Constructs in the Surgical Treatment of Adult Spinal Deformity?

    No full text
    Abstract BACKGROUND: The length of construct can potentially influence perioperative risks in adult spinal deformity (ASD) surgery. A head-to-head comparison between open and minimally invasive surgery (MIS) techniques for treatment of ASD has yet to be performed. OBJECTIVE: To examine the impact of MIS approaches on construct length and clinical outcomes in comparison to traditional open approaches when treating similar ASD profiles. METHODS: Two multicenter databases for ASD, 1 involving MIS procedures and the other open procedures, were propensity matched for clinical and radiographic parameters in this observational study. Inclusion criteria were ASD and minimum 2-year follow-up. Independent t-test and chi-square test were used to evaluate and compare outcomes. RESULTS: A total of 1215 patients were identified, with 84 patients matched in each group. Statistical significance was found for mean levels fused (4.8 for circumferential MIS [cMIS] and 10.1 for open), mean interbody fusion levels (3.6 cMIS and 2.4 open), blood loss (estimated blood loss 488 mL cMIS and 1762 mL open), and hospital length of stay (6.7 days cMIS and 9.7 days open). There was no significant difference in preoperative radiographic parameters or postoperative clinical outcomes (Owestry Disability Index and visual analog scale) between groups. There was a significant difference in postoperative lumbar lordosis (43.3° cMIS and 49.8° open) and pelvic incidence-lumbar lordosis correction (10.6° cMIS and 5.2° open) in the open group. There was no significant difference in reoperation rate between the 2 groups. CONCLUSION: MIS techniques for ASD may reduce construct length, reoperation rates, blood loss, and length of stay without affecting clinical and radiographic outcomes when compared to a similar group of patients treated with open techniques

    Impact of case type, length of stay, institution type, and comorbidities on Medicare diagnosis-related group reimbursement for adult spinal deformity surgery

    No full text
    OBJECTIVE The aim of this study was to educate medical professionals about potential financial impacts of improper diagnosis-related group (DRG) coding in adult spinal deformity (ASD) surgery. METHODS Medicare's Inpatient Prospective Payment System PC Pricer database was used to collect 2015 reimbursement data for ASD procedures from 12 hospitals. Case type, hospital type/location, number of operative levels, proper coding, length of stay, and complications/comorbidities (CCs) were analyzed for effects on reimbursement. DRGs were used to categorize cases into 3 types: 1) anterior or posterior only fusion, 2) anterior fusion with posterior percutaneous fixation with no dorsal fusion, and 3) combined anterior and posterior fixation and fusion. RESULTS Pooling institutions, cases were reimbursed the same for single-level and multilevel ASD surgery. Longer stay, from 3 to 8 days, resulted in an additional 1400perstay.Posteriorfusionwasanadditional1400 per stay. Posterior fusion was an additional 6588, while CCs increased reimbursement by approximately 13,000.Academicinstitutionsreceivedhigherreimbursementthanprivateinstitutions,i.e.,approximately13,000. Academic institutions received higher reimbursement than private institutions, i.e., approximately 14,000 (Case Types 1 and 2) and approximately 16,000(CaseType3).Urbaninstitutionsreceivedhigherreimbursementthansuburbaninstitutions,i.e.,approximately16,000 (Case Type 3). Urban institutions received higher reimbursement than suburban institutions, i.e., approximately 3000 (Case Types 1 and 2) and approximately 3500(CaseType3).Longerstay,from3to8days,increasedreimbursementbetween3500 (Case Type 3). Longer stay, from 3 to 8 days, increased reimbursement between 208 and 494forprivateinstitutionsandbetween494 for private institutions and between 1397 and $1879 for academic institutions per stay. CONCLUSIONS Reimbursement is based on many factors not controlled by surgeons or hospitals, but proper DRG coding can significantly impact the financial health of hospitals and availability of quality patient care

    Clinical and radiographic parameters associated with best versus worst clinical outcomes in minimally invasive spinal deformity surgery

    No full text
    OBJECTIVE Minimally invasive surgery (MIS) techniques are increasingly used to treat adult spinal deformity. However, standard minimally invasive spinal deformity techniques have a more limited ability to restore sagittal balance and match the pelvic incidence-lumbar lordosis (PI-LL) than traditional open surgery. This study sought to compare "best" versus "worst" outcomes of MIS to identify variables that may predispose patients to postoperative success. METHODS A retrospective review of minimally invasive spinal deformity surgery cases was performed to identify parameters in the 20% of patients who had the greatest improvement in Oswestry Disability Index (ODI) scores versus those in the 20% of patients who had the least improvement in ODI scores at 2 years' follow-up. RESULTS One hundred four patients met the inclusion criteria, and the top 20% of patients in terms of ODI improvement at 2 years (best group, 22 patients) were compared with the bottom 20% (worst group, 21 patients). There were no statistically significant differences in age, body mass index, pre- and postoperative Cobb angles, pelvic tilt, pelvic incidence, levels fused, operating room time, and blood loss between the best and worst groups. However, the mean preoperative ODI score was significantly higher (worse disability) at baseline in the group that had the greatest improvement in ODI score (58.2 vs 39.7, p < 0.001). There was no difference in preoperative PI-LL mismatch (12.8° best vs 19.5° worst, p = 0.298). The best group had significantly less postoperative sagittal vertical axis (SVA; 3.4 vs 6.9 cm, p = 0.043) and postoperative PI-LL mismatch (10.4° vs 19.4°, p = 0.027) than the worst group. The best group also had better postoperative visual analog scale back and leg pain scores (p = 0.001 and p = 0.046, respectively). CONCLUSIONS The authors recommend that spinal deformity surgeons using MIS techniques focus on correcting a patient's PI-LL mismatch to within 10° and restoring SVA to < 5 cm. Restoration of these parameters seems to impact which patients will attain the greatest degree of improvement in ODI outcomes, while the spines of patients who do the worst are not appropriately corrected and may be fused into a fixed sagittal plane deformity
    corecore