2,219 research outputs found

    Feedback control of thermal lensing in a high optical power cavity

    Get PDF
    This paper reports automatic compensation of strong thermal lensing in a suspended 80 m optical cavity with sapphire test mass mirrors. Variation of the transmitted beam spot size is used to obtain an error signal to control the heating power applied to the cylindrical surface of an intracavity compensation plate. The negative thermal lens created in the compensation plate compensates the positive thermal lens in the sapphire test mass, which was caused by the absorption of the high intracavity optical power. The results show that feedback control is feasible to compensate the strong thermal lensing expected to occur in advanced laser interferometric gravitational wave detectors. Compensation allows the cavity resonance to be maintained at the fundamental mode, but the long thermal time constant for thermal lensing control in fused silica could cause difficulties with the control of parametric instabilities.This research was supported by the Australian Research Council and the Department of Education, Science and Training and by the U.S. National Science Foundation, through LIGO participation in the HOPF

    A framework for the simulation of structural software evolution

    Get PDF
    This is the author's accepted manuscript. The final published article is available from the link below. Copyright @ 2008 ACM.As functionality is added to an aging piece of software, its original design and structure will tend to erode. This can lead to high coupling, low cohesion and other undesirable effects associated with spaghetti architectures. The underlying forces that cause such degradation have been the subject of much research. However, progress in this field is slow, as its complexity makes it difficult to isolate the causal flows leading to these effects. This is further complicated by the difficulty of generating enough empirical data, in sufficient quantity, and attributing such data to specific points in the causal chain. This article describes a framework for simulating the structural evolution of software. A complete simulation model is built by incrementally adding modules to the framework, each of which contributes an individual evolutionary effect. These effects are then combined to form a multifaceted simulation that evolves a fictitious code base in a manner approximating real-world behavior. We describe the underlying principles and structures of our framework from a theoretical and user perspective; a validation of a simple set of evolutionary parameters is then provided and three empirical software studies generated from open-source software (OSS) are used to support claims and generated results. The research illustrates how simulation can be used to investigate a complex and under-researched area of the development cycle. It also shows the value of incorporating certain human traits into a simulation—factors that, in real-world system development, can significantly influence evolutionary structures

    Compensation of Strong Thermal Lensing in High Optical Power Cavities

    Get PDF
    In an experiment to simulate the conditions in high optical power advanced gravitational wave detectors such as Advanced LIGO, we show that strong thermal lenses form in accordance with predictions and that they can be compensated using an intra-cavity compensation plate heated on its cylindrical surface. We show that high finesse ~1400 can be achieved in cavities with internal compensation plates, and that the cavity mode structure can be maintained by thermal compensation. It is also shown that the measurements allow a direct measurement of substrate optical absorption in the test mass and the compensation plate.Comment: 8 page

    The persistence landscape and some of its properties

    Full text link
    Persistence landscapes map persistence diagrams into a function space, which may often be taken to be a Banach space or even a Hilbert space. In the latter case, it is a feature map and there is an associated kernel. The main advantage of this summary is that it allows one to apply tools from statistics and machine learning. Furthermore, the mapping from persistence diagrams to persistence landscapes is stable and invertible. We introduce a weighted version of the persistence landscape and define a one-parameter family of Poisson-weighted persistence landscape kernels that may be useful for learning. We also demonstrate some additional properties of the persistence landscape. First, the persistence landscape may be viewed as a tropical rational function. Second, in many cases it is possible to exactly reconstruct all of the component persistence diagrams from an average persistence landscape. It follows that the persistence landscape kernel is characteristic for certain generic empirical measures. Finally, the persistence landscape distance may be arbitrarily small compared to the interleaving distance.Comment: 18 pages, to appear in the Proceedings of the 2018 Abel Symposiu

    WISER Deliverable D3.3-2: The importance of invertebrate spatial and temporal variation for ecological status classification for European lakes

    Get PDF
    European lakes are affected by many human induced disturbances. In principle, ecological theories predict that the structure and functioning of benthic invertebrate assemblage (one of the Biological Quality Elements following the Water Framework Directive, WFD terminology) change in response to the level of disturbances, making this biological element suitable for assessing the status and management of lake ecosystems. In practice, to set up assessment systems based on invertebrates, we need to distiguish community changes that are related to human pressures from those that are inherent natural variability. This task is complicated by the fact that invertebrate communities inhabiting the littoral and the profundal zones of lakes are constrained by different factors and respond unevenly to distinct human disturbances. For example it is not clear yet how the invertebrates assemblages respond to watershed and shoreline alterations, nor the relative importance of spatial and temporal factors on assemblage dynamics and relative bioindicator values of taxa, the habitat constraints on species traits and other taxonomic and methodological limitations. The current lack of knowledge of basic features of invertebrate temporal and spatial variations is limiting the fulfillment of the EU-wide intercalibration of lake ecological quality assessment systems in Europe, and thus compromising the basis for setting the environmental objectives as required by the WFD. The aim of this deliverable is to provide a contribution towards the understanding of basic sources of spatial and temporal variation of lake invertebrate assemblages. The report is structured around selected case studies, manly involving the analysis of existing datasets collated within WISER. The case studies come from different European lake types in the Northern, Central, Alpine and Mediterranean regions. All chapters have an obvious applied objective and our aim is to provide to those dealing with WFD implementation at various levels useful information to consider when designing monitoring programs and / or invertebrate-based classification systems

    Large Scale Flows from Orion-South

    Get PDF
    Multiple optical outflows are known to exist in the vicinity of the active star formation region called Orion-South (Orion-S). We have mapped the velocity of low ionization features in the brightest part of the Orion Nebula, including Orion-S, and imaged the entire nebula with the Hubble Space Telescope. These new data, combined with recent high resolution radio maps of outflows from the Orion-S region, allow us to trace the origin of the optical outflows. It is confirmed that HH 625 arises from the blueshifted lobe of the CO outflow from 136-359 in Orion-S while it is likely that HH 507 arises from the blueshifted lobe of the SiO outflow from the nearby source 135-356. It is likely that redshifted lobes are deflected within the photon dominated region behind the optical nebula. This leads to a possible identification of a new large shock to the southwest from Orion-S as being driven by the redshifted CO outflow arising from 137-408. The distant object HH 400 is seen to have two even further components and these all are probably linked to either HH 203, HH 204, or HH 528. Distant shocks on the west side of the nebula may be related to HH 269. The sources of multiple bright blueshifted Herbig-Haro objects (HH 202, HH 203, HH 204, HH 269, HH 528) remain unidentified, in spite of earlier claimed identifications. Some of this lack of identification may arise from the fact that deflection in radial velocity can also produce a change in direction in the plane of the sky. The best way to resolve this open question is through improved tangential velocities of low ionization features arising where the outflows first break out into the ionized nebula.Comment: Astronomical Journal, in press. Some figures are shown at reduced resolution. A full-resolution version is available at http://ifront.org/wiki/Orion_South_Outflows_Pape

    Stresses in silos: Comparison between theoretical models and new experiments

    Full text link
    We present precise and reproducible mean pressure measurements at the bottom of a cylindrical granular column. If a constant overload is added, the pressure is linear in overload and nonmonotonic in the column height. The results are {\em quantitatively} consistent with a local, linear relation between stress components, as was recently proposed by some of us. They contradict the simplest classical (Janssen) approximation, and may pose a rather severe test of competing models.Comment: 4 pages, 2 figures, final version to appear in Phys. Rev. Let
    • …
    corecore