6 research outputs found

    Risk Factors for Breast Cancer and Expression of Insulin-Like Growth Factor-2 (IGF-2) in Women with Breast Cancer in Wuhan City, China

    Get PDF
    PURPOSE: The purpose of this study was to explore the risk factors for breast cancer and establish the expression rate of IGF-2 in female patients. METHODS: A case control study with 500 people in case group and 500 people in control group. A self-administered questionnaire was used to investigate risk factors for breast cancer. All cases were interviewed during a household survey. Immune-histochemical method was used to inspect the expression of IGF-2 in different tissues (benign breast lesions, breast cancer and tumor-adjacent tissue). RESULTS: Multivariate adjusted odds ratios and 95% confidence intervals were calculated using unconditional logistic regression. High body mass index (OR = 1.012,95%CI = 1.008-1.016), working attributes (OR = 1.004, 95%CI = 1.002 = 1.006), long menstrual period (OR = 1.007, 95%CI = 1.005-1.009), high parity OR = 1.003, 95%CI = 1.001-1.005) , frequent artificial abortion (OR = 1.004, 95%CI = 1.001-1.005), family history of cancer (OR = 1.003, 95%CI = 1.000-1.005), period of night shift (OR = 1.003, 95%CI = 1.001-1.006), live in high risk environment (OR = 1.005, 95%CI = 1.002-1.008), and family problems (OR = 1.010, 95%CI = 1.005-1.014) were associated with increased risk for breast cancer. In this study, good sleeping status, positive coping strategies, subjective support, and utility degree of social support were associated with reduced risk for breast cancer (OR = 0.998, 0.997, 0.985, 0.998 respectively; 95%CI = 0.996-1.000, 0.994-1.000, 0.980-0.989, 0.996-1.000, respectively). In benign breast lesions, breast cancer and tumor-adjacent tissue, IGF-2 was mainly expressed in the cytoplasm, but its expression rate was different (p<0.05). CONCLUSIONS: The incidence of breast cancer is a common result of multiple factors. IGF-2 is involved in the development of breast cancer, and its expression varies in different tissues (benign breast lesions, breast cancer and tumor-adjacent tissue)

    Ceramide kinase regulates phospholipase C and phosphatidylinositol 4, 5, bisphosphate in phototransduction

    No full text
    Phosphoinositide-specific phospholipase C (PLC) is a central effector for many biological responses regulated by G-protein–coupled receptors including Drosophila phototransduction where light sensitive channels are activated downstream of NORPA, a PLCβ homolog. Here we show that the sphingolipid biosynthetic enzyme, ceramide kinase, is a novel regulator of PLC signaling and photoreceptor homeostasis. A mutation in ceramide kinase specifically leads to proteolysis of NORPA, consequent loss of PLC activity, and failure in light signal transduction. The mutant photoreceptors also undergo activity-dependent degeneration. Furthermore, we show that a significant increase in ceramide, resulting from lack of ceramide kinase, perturbs the membrane microenvironment of phosphatidylinositol 4, 5, bisphosphate (PIP2), altering its distribution. Fluorescence image correlation spectroscopic studies on model membranes suggest that an increase in ceramide decreases clustering of PIP2 and its partitioning into ordered membrane domains. Thus ceramide kinase–mediated maintenance of ceramide level is important for the local regulation of PIP2 and PLC during phototransduction

    Extracellular Vesicles as Drug Delivery Systems - Methods of Production and Potential Therapeutic Applications

    No full text
    corecore