95 research outputs found
Cybersecurity, Artificial Intelligence, and Risk Management: Understanding Their Implementation in Military Systems Acquisitions
Symposium PresentationApproved for public release; distribution is unlimited
Total Ownership with Life-Cycle Cost Model Under Uncertainty [video]
A video presentation with accompanying slides.In this research, we look at answering the following primary question: Would an advanced analytical model be a more effective metric to estimate total ownership cost (TOC) with life-cycle cost under uncertainty and risk than the current method of life-cycle cost estimates for Surface EO/IR Sensors? To accomplish this, the research developed and analyzed a computational model for Total Ownership with Life-Cycle Cost Model Under Uncertainty for Surface Electro-Optical Infrared Sensors. During the development of the model, we identified the required data and examined the current Department of Defense (DoD) method for determining system life-cycle costs for defense systems and determined that the proposed model is a useful alternative to the current method of determining the life-cycle costs for EO/IR Sensors on surface ships. Finally, we concluded that the developed model can be applied to cost estimating in other sectors of DoD cost projections.Prepared for the Naval Postgraduate School, Monterey, CA 93943.Naval Postgraduate SchoolApproved for public release; distribution is unlimited.Approved for public release; distribution is unlimited
Total Ownership with Lifecycle Cost Model Under Uncertainty
NPS NRP Project PosterTotal Ownership with Lifecycle Cost Model Under UncertaintyN9 - Warfare SystemsThis research is supported by funding from the Naval Postgraduate School, Naval Research Program (PE 0605853N/2098). https://nps.edu/nrpChief of Naval Operations (CNO)Approved for public release. Distribution is unlimited.
Capturing Risk in Capital Budgeting
NPS NRP Project PosterThis proposed research has the goal of proposing novel, reusable, extensible, adaptable, and comprehensive advanced analytical process and Integrated Risk Management to help the (DOD) with risk-based capital budgeting, Monte Carlo risk-simulation, predictive analytics, and stochastic optimization of acquisitions and programs portfolios with multiple competing stakeholders while subject to budgetary, risk, schedule, and strategic constraints. The research covers topics of traditional capital budgeting methodologies used in industry, including the market, cost, and income approaches, and explains how some of these traditional methods can be applied in the DOD by using DOD-centric non-economic, logistic, readiness, capabilities, and requirements variables. Stochastic portfolio optimization with dynamic simulations and investment efficient frontiers will be run for the purposes of selecting the best combination of programs and capabilities is also addressed, as are other alternative methods such as average ranking, risk metrics, lexicographic methods, PROMETHEE, ELECTRE, and others. The results include actionable intelligence developed from an analytically robust case study that senior leadership at the DOD may utilize to make optimal decisions. The main deliverables will be a detailed written research report and presentation brief on the approach of capturing risk and uncertainty in capital budgeting analysis. The report will detail the proposed methodology and applications, as well as a summary case study and examples of how the methodology can be applied.N8 - Integration of Capabilities & ResourcesThis research is supported by funding from the Naval Postgraduate School, Naval Research Program (PE 0605853N/2098). https://nps.edu/nrpChief of Naval Operations (CNO)Approved for public release. Distribution is unlimited.
Capturing Risk in Capital Budgeting
NPS NRP Technical ReportThis proposed research has the goal of proposing novel, reusable, extensible, adaptable, and comprehensive advanced analytical process and Integrated Risk Management to help the (DOD) with risk-based capital budgeting, Monte Carlo risk-simulation, predictive analytics, and stochastic optimization of acquisitions and programs portfolios with multiple competing stakeholders while subject to budgetary, risk, schedule, and strategic constraints. The research covers topics of traditional capital budgeting methodologies used in industry, including the market, cost, and income approaches, and explains how some of these traditional methods can be applied in the DOD by using DOD-centric non-economic, logistic, readiness, capabilities, and requirements variables. Stochastic portfolio optimization with dynamic simulations and investment efficient frontiers will be run for the purposes of selecting the best combination of programs and capabilities is also addressed, as are other alternative methods such as average ranking, risk metrics, lexicographic methods, PROMETHEE, ELECTRE, and others. The results include actionable intelligence developed from an analytically robust case study that senior leadership at the DOD may utilize to make optimal decisions. The main deliverables will be a detailed written research report and presentation brief on the approach of capturing risk and uncertainty in capital budgeting analysis. The report will detail the proposed methodology and applications, as well as a summary case study and examples of how the methodology can be applied.N8 - Integration of Capabilities & ResourcesThis research is supported by funding from the Naval Postgraduate School, Naval Research Program (PE 0605853N/2098). https://nps.edu/nrpChief of Naval Operations (CNO)Approved for public release. Distribution is unlimited.
Empirical Cost Modeling
Naval Postgraduate School Acquisition Research Progra
Capturing Risk in Capital Budgeting
NPS NRP Executive SummaryThis proposed research has the goal of proposing novel, reusable, extensible, adaptable, and comprehensive advanced analytical process and Integrated Risk Management to help the (DOD) with risk-based capital budgeting, Monte Carlo risk-simulation, predictive analytics, and stochastic optimization of acquisitions and programs portfolios with multiple competing stakeholders while subject to budgetary, risk, schedule, and strategic constraints. The research covers topics of traditional capital budgeting methodologies used in industry, including the market, cost, and income approaches, and explains how some of these traditional methods can be applied in the DOD by using DOD-centric non-economic, logistic, readiness, capabilities, and requirements variables. Stochastic portfolio optimization with dynamic simulations and investment efficient frontiers will be run for the purposes of selecting the best combination of programs and capabilities is also addressed, as are other alternative methods such as average ranking, risk metrics, lexicographic methods, PROMETHEE, ELECTRE, and others. The results include actionable intelligence developed from an analytically robust case study that senior leadership at the DOD may utilize to make optimal decisions. The main deliverables will be a detailed written research report and presentation brief on the approach of capturing risk and uncertainty in capital budgeting analysis. The report will detail the proposed methodology and applications, as well as a summary case study and examples of how the methodology can be applied.N8 - Integration of Capabilities & ResourcesThis research is supported by funding from the Naval Postgraduate School, Naval Research Program (PE 0605853N/2098). https://nps.edu/nrpChief of Naval Operations (CNO)Approved for public release. Distribution is unlimited.
Total Ownership with Lifecycle Cost Model Under Uncertainty
NPS NRP Executive SummaryTotal Ownership with Lifecycle Cost Model Under UncertaintyN9 - Warfare SystemsThis research is supported by funding from the Naval Postgraduate School, Naval Research Program (PE 0605853N/2098). https://nps.edu/nrpChief of Naval Operations (CNO)Approved for public release. Distribution is unlimited.
Total Ownership with Lifecycle Cost Model Under Uncertainty
NPS NRP Technical ReportTotal Ownership with Lifecycle Cost Model Under UncertaintyN9 - Warfare SystemsThis research is supported by funding from the Naval Postgraduate School, Naval Research Program (PE 0605853N/2098). https://nps.edu/nrpChief of Naval Operations (CNO)Approved for public release. Distribution is unlimited.
Cybersecurity, Artificial Intelligence, and Risk Management: Understanding Their Implementation in Military Systems Acquisitions
Excerpt from the Proceedings of the Nineteenth Annual Acquisition Research SymposiumThis research has the explicit goal of proposing a reusable, extensible, adaptable, and comprehensive advanced analytical modeling process to help the U.S. Navy in quantifying, modeling, valuing, and optimizing a set of nascent Artificial Intelligence and Machine Learning (AI/ML) applications in the aerospace, automotive and transportation industries and developing a framework with a hierarchy of functions by technology category and developing a unique-to-Navy-ship construct that, based on weighted criteria, scores the return on investment of developing naval AI/ML applications that enhance warfighting capabilities. This current research proposes to create a business case for making strategic decisions under uncertainty. Specifically, we will look at a portfolio of nascent artificial intelligence and machine learning applications, both at the PEO-SHIPS and extensible to the Navy Fleet. This portfolio of options approach to business case justification will provide tools to allow decision-makers to decide on the optimal flexible options to implement and allocate in different types of artificial intelligence and machine learning applications, subject to budget constraints, across multiple types of ships. The concept of the impact of innovative technology on productivity has applicability beyond the Department of Defense (DoD). Private industry can greatly benefit from the concepts and methodologies developed in this research to apply to the hiring and talent management of scientists, programmers, engineers, analysts, and senior executives in the workforce to increase innovation productivity.Approved for public release; distribution is unlimited
- …