410 research outputs found

    Optical Systems Identification through Rayleigh Backscattering

    Get PDF
    : We introduce a technique to generate and read the digital signature of the networks, channels, and optical devices that possess the fiber-optic pigtails to enhance physical layer security (PLS). Attributing a signature to the networks or devices eases the identification and authentication of networks and systems thus reducing their vulnerability to physical and digital attacks. The signatures are generated using an optical physical unclonable function (OPUF). Considering that OPUFs are established as the most potent anti-counterfeiting tool, the created signatures are robust against malicious attacks such as tampering and cyber attacks. We investigate Rayleigh backscattering signal (RBS) as a strong OPUF to generate reliable signatures. Contrary to other OPUFs that must be fabricated, the RBS-based OPUF is an inherent feature of fibers and can be easily obtained using optical frequency domain reflectometry (OFDR). We evaluate the security of the generated signatures in terms of their robustness against prediction and cloning. We demonstrate the robustness of signatures against digital and physical attacks confirming the unpredictability and unclonability features of the generated signatures. We explore signature cyber security by considering the random structure of the produced signatures. To demonstrate signature reproducibility through repeated measurements, we simulate the signature of a system by adding a random Gaussian white noise to the signal. This model is proposed to address services including security, authentication, identification, and monitoring

    Computational Analysis of Artificial Gravity as a Possible Countermeasure to Spaceflight Induced Bone Loss

    Get PDF
    During exploration class missions, such as to asteroids and Mars, astronauts will be exposed to reduced gravity for extended periods. Data has shown that astronauts lose bone mass at a rate of 1% to 2% a month in microgravity, particularly in lower extremities such as the proximal femur. Exercise countermeasures have not completely eliminated bone loss from long duration spaceflight missions, which leaves astronauts susceptible to early onset osteoporosis and greater risk of fracture. Introduction of the Advanced Resistive Exercise Device and other large exercise devices on the International Space Station (ISS), coupled with improved nutrition, has further minimized bone loss. However, unlike the ISS, exploration vehicles will have very limited volume and power available to accommodate such capabilities. Therefore, novel concepts like artificial gravity systems are being explored as a means to provide sufficient load stimulus to the musculoskeletal system to mitigate bone changes that may lead to early onset osteoporosis and increased risk of fracture. Currently, there is minimal data available to drive further research and development efforts to appropriately explore such options. Computational modeling can be leveraged to gain insight on the level of osteoprotection that may be achieved using artificial gravity produced by a spinning spacecraft or centrifuge. With this in mind, NASA's Digital Astronaut Project (DAP) has developed a bone remodeling model that has been validated for predicting volumetric bone mineral density (vBMD) changes of trabecular and cortical bone both for gravitational unloading condition and the equivalent of 1g daily load stimulus. Using this model, it is possible to simulate vBMD changes in trabecular and cortical bone under different gravity conditions. In this presentation, we will discuss our preliminary findings regarding if and how artificial gravity may be used to mitigate spaceflight induced bone loss

    Musculoskeletal Modeling Component of the NASA Digital Astronaut Project

    Get PDF
    The NASA Digital Astronaut Project s (DAP) objective is to provide computational tools that support research of the physiological response to low gravity environments and analyses of how changes cause health and safety risks to the astronauts and to the success of the mission. The spaceflight risk associated with muscle atrophy is impaired performance due to reduced muscle mass, strength and endurance. Risks of early onset of osteoporosis and bone fracture are among the spaceflight risks associated with loss of bone mineral density. METHODS: Tools under development include a neuromuscular model, a biomechanical model and a bone remodeling model. The neuromuscular model will include models of neuromuscular drive, muscle atrophy, fiber morphology and metabolic processes as a function of time in space. Human movement will be modeled with the biomechanical model, using muscle and bone model parameters at various states. The bone remodeling model will allow analysis of bone turnover, loss and adaptation. A comprehensive trade study was completed to identify the current state of the art in musculoskeletal modeling. The DAP musculoskeletal models will be developed using a combination of existing commercial software and academic research codes identified in the study, which will be modified for use in human spaceflight research. These individual models are highly dependent upon each other and will be integrated together once they reach sufficient levels of maturity. ANALYSES: The analyses performed with these models will include comparison of different countermeasure exercises for optimizing effectiveness and comparison of task requirements and the state of strength and endurance of a crew member at a particular time in a mission. DISCUSSION: The DAP musculoskeletal model has the potential to complement research conducted on spaceflight induced changes to the musculoskeletal system. It can help with hypothesis formation, identification of causative mechanisms and supplementing small data samples

    Natural history of a visceral leishmaniasis outbreak in highland Ethiopia

    Get PDF
    In May 2005, visceral leishmaniasis (VL) was recognized for the first time in Libo Kemken, Ethiopia, a highland region where only few cases had been reported before. We analyzed records of VL patients treated from May 25, 2005 to December 13, 2007 by the only VL treatment center in the area, maintained by Médecins Sans Frontières-Ethiopia, Operational Center Barcelona-Athens. The median age was 18 years; 77.6% were male. The overall case fatality rate was 4%, but adults 45 years or older were five times as likely to die as 5-29 year olds. Other factors associated with increased mortality included HIV infection, edema, severe malnutrition, pneumonia, tuberculosis, and vomiting. The VL epidemic expanded rapidly over a several-year period, culminating in an epidemic peak in the last third of 2005, spread over two districts, and transformed into a sustained endemic situation by 2007

    Project #17: Impact of Pharmacist Generated Discharge Antimicrobial Cost Inquiry on Access and Patient Outcome

    Get PDF
    Identifying barriers to accessing and affording discharge antimicrobials early in the hospitalization course in order to facilitate discharge, enhance compliance, and reduce unnecessary length of stay. In 6/2018, a pharmacist initiated “cost-inquiry” workflow was developed to capture such obstacles. The study evaluated the process and safety of the discharge antimicrobial cost inquiry (DACI) workflow as well as the challenges to accessing discharge antimicrobials. It also assessed the differences in outcomes in patients discharged with (DACI group) and without (standard of care, SOC, group) a cost inquiry. Early identification of barriers to accessing discharge antimicrobials allows clinicians to mitigate the challenges by either discussing with patients regarding affordability or designing an alternative and affordable therapeutic regimen. This novel process provides an enhanced safety-net to assure accessibility and adds to person-centered care by involving patients to confirm affordability.https://scholarlycommons.henryford.com/qualityexpo2022/1001/thumbnail.jp

    Optimizing preoperative antibiotics in patients with β-lactam allergies: A role for pharmacy

    Get PDF
    PURPOSE: Patients with a reported β-lactam allergy (BLA) are often given alternative perioperative antibiotic prophylaxis, increasing risk of surgical site infections (SSIs), acute kidney injury (AKI), and Clostridioides difficile infection (CDI). The purpose of this study was to implement and evaluate a pharmacist-led BLA clarification interview service in the preoperative setting. METHODS: A pharmacist performed BLA clarification telephone interviews before elective procedures from November 2018 to March 2019. On the basis of allergy history and a decision algorithm, first-line preoperative antibiotics, alternative antibiotics, or allergy testing referral was recommended. The pharmacist intervention (PI) group was compared to a standard of care (SOC) group who underwent surgery from November 2017 to March 2018. RESULTS: Eighty-seven patients were included, with 50 (57%) and 37 (43%) in the SOC and PI groups, respectively. The most common surgeries included orthopedic surgery in 41 patients (47%) and neurosurgery in 17 patients (20%). In the PI group, all BLA labels were updated after interview. Twenty-three patients were referred for allergy testing, 12 of the 23 (52%) completed BLA testing, and penicillin allergies were removed for 9 of the 12 patients. Overall, 28 of the 37 (76%) pharmacy antibiotic recommendations were accepted. Cefazolin use significantly increased from 28% to 65% after the intervention (P = 0.001). SSI occurred in 5 (10%) patients in the SOC group and no patients in the PI group (P = 0.051). All of these SSIs were associated with alternative antibiotics. Incidence of AKI and CDI was similar between the groups. No allergic reactions occurred in either group. CONCLUSION: Implementation of a pharmacy-driven BLA reconciliation significantly increased β-lactam preoperative use without negative safety outcomes

    Development of the NASA Digital Astronaut Project Muscle Model

    Get PDF
    This abstract describes development work performed on the NASA Digital Astronaut Project Muscle Model. Muscle atrophy is a known physiological response to exposure to a low gravity environment. The DAP muscle model computationally predicts the change in muscle structure and function vs. time in a reduced gravity environment. The spaceflight muscle model can then be used in biomechanical models of exercise countermeasures and spaceflight tasks to: 1) develop site specific bone loading input to the DAP bone adaptation model over the course of a mission; 2) predict astronaut performance of spaceflight tasks; 3) inform effectiveness of new exercise countermeasures concepts

    Lumped Parameter Models of the Central Nervous System for VIIP Research

    Get PDF
    INTRODUCTION: Current long-duration missions to the International Space Station and future exploration-class missions beyond low-Earth orbit, such as to Mars and asteroids, expose astronauts to increased risk of Visual Impairment and Intracranial Pressure (VIIP) syndrome [1]. It has been hypothesized that the headward shift of cerebral spinal fluid (CSF) and blood in microgravity may cause significant elevation of intracranial pressure (ICP), which in turn induces VIIP syndrome through biomechanical pathways [1, 2]. However, there is insufficient evidence to confirm this hypothesis. In this light, we are developing lumped-parameter models of fluid transport in the central nervous system (CNS) as a means to simulate the influence of microgravity on ICP. The CNS models will also be used in concert with the lumped parameter and finite element models of the eye described in the realted IWS abstracts submitted by Nelson et al., Feola et al. and Ethier et al. METHODS: We have developed a nine compartment CNS model (Figure 1) capable of both time-dependent and steady state fluid transport simulations, based on the works of Stevens et al. [3]. The breakdown of compartments within the model includes: vascular (3), CSF (2), brain (1) and extracranial (3). The boundary pressure in the Central Arteries [A] node is prescribed using an oscillating pressure function PA(t) simulating the carotid pulsatile pressure wave as developed by Linninger et al. [4]. For each time step, pressures are integrated through time using an adaptive-timestep 4th and 5th order Runga-Kutta solver. Once pressures are found, constitutive equations are used to solve for flowrates (Q) between each compartment. In addition to fluid flow between the different compartments, compliance (C) interactions between neighboring compartments are represented. We are also developing a second CNS model based on the works of Linninger et al. [4] which takes a more granular approach to represent the interactions of the intracranial and spinal compartments with the inclusion of arteries, arterioles, capillaries, venules, veins, venous sinus, and ventricles. The flow through the arteries, veins and CSF compartments are governed by continuity, momentum and distensibility balance equations. Furthermore, unlike the Stevens et al. approach, the Monro-Kellie doctrine of constant cranial volume and the bi-phasic nature of the brain parenchyma are implemented. These features appear to be more consistent with the physiologic and anatomical behavior of the CNS, and follow a modeling philosophy similar to the lumped parameter eye model that is intended to be integrated with the CNS model. However, Linningers approach has never been implemented to include hydrostatic gradient and microgravity simulation capabilities. Therefore, we aim at implement this modeling approach for spaceflight simulations and assess its overall applicability to VIIP research. OBJECTIVES: We will present verification and validation test results for both models, as well as head-to-head comparison to explore their strengths and limitations with respect to mathematical implementation and physiological significance for VIIP research. In doing so, we hope to provide some guidance to the HRP research community on how to appropriately leverage lumped parameter models for space biomedical research
    corecore