9 research outputs found

    Rb as an Alternative Cation for Templating Inorganic Lead-Free Perovskites for Solution Processed Photovoltaics

    Full text link
    Even though perovskite solar cells have reached 22% efficiency within a very short span, the presence of lead is a major bottleneck to its commercial application. Tin and germanium based perovskites failed to be viable replacements due to the instability of their +2 oxidation states. Antimony could be a possible replacement, forming perovskites with structure A3M2X9. However, solution processing of Cs, organic ammonium based Sb perovskites result in the formation of the dimer phase with poor charge transport properties. Here we demonstrate that Rb can template the formation of the desired layered phase irrespective of processing methodologies, enabling the demonstration of efficient lead-free perovskite solar cells

    Light and Electrically Induced Phase Segregation and Its Impact on the Stability of Quadruple Cation High Bandgap Perovskite Solar Cells.

    Full text link
    Perovskite material with a bandgap of 1.7-1.8 eV is highly desirable for the top cell in a tandem configuration with a lower bandgap bottom cell, such as a silicon cell. This can be achieved by alloying iodide and bromide anions, but light-induced phase-segregation phenomena are often observed in perovskite films of this kind, with implications for solar cell efficiency. Here, we investigate light-induced phase segregation inside quadruple-cation perovskite material in a complete cell structure and find that the magnitude of this phenomenon is dependent on the operating condition of the solar cell. Under short-circuit and even maximum power point conditions, phase segregation is found to be negligible compared to the magnitude of segregation under open-circuit conditions. In accordance with the finding, perovskite cells based on quadruple-cation perovskite with 1.73 eV bandgap retain 94% of the original efficiency after 12 h operation at the maximum power point, while the cell only retains 82% of the original efficiency after 12 h operation at the open-circuit condition. This result highlights the need to have standard methods including light/dark and bias condition for testing the stability of perovskite solar cells. Additionally, phase segregation is observed when the cell was forward biased at 1.2 V in the dark, which indicates that photoexcitation is not required to induce phase segregation

    The Effect of Stoichiometry on the Stability of Inorganic Cesium Lead Mixed-Halide Perovskites Solar Cells

    Full text link
    Metal halide perovskite solar cells that use the inorganic cation Cs have been shown to have better thermal stability than the organic cation containing counterparts, and CsPbI2Br has a more suitable (lower) band gap than CsPbIBr2 as a photovoltaic energy harvesting material. However, increase in iodine content reduces structural stability due to the preference toward the non-perovskite orthorhombic phase when the film is exposed to air. In this work, the effect of varying stoichiometry of CsPbI2Br perovskite on film quality such as the grain size, presence of impurities and nature of impurity grains, photoluminescence, morphology, and elemental distribution are studied. Details on how to vary the stoichiometry during the dual source thermal evaporation process are reported. It is found that the air stability of CsPbI2Br film correlates with the CsBr-to-PbI2 deposition rate ratio, in which the CsBr-rich CsPbI2Br is the most stable upon air exposure, while the stoichiometrically balanced CsPbI2Br perovskite film gives the best photovoltaic performance. The encapsulated device maintains 90% of the initial performance after 240 h damp and heat test at 85 °C and 85% relative humidity

    Structural engineering using rubidium iodide as a dopant under excess lead iodide conditions for high efficiency and stable perovskites

    Full text link
    The highest efficiency perovskite solar cells reported so far are based on mixtures of formamidinium lead triiodide (FAPbI3) and methylammonium lead tribromide (MAPbBr3), where MAPbBr3 acts as a stabilizer to improve the formation of the black perovskite phase. In this work, we dope the perovskite precursor mixture with rubidium iodide (RbI) and study the interplay between the doping substituent and the PbI2 excess on the perovskite phase formation and film morphology. The addition of 5% RbI in combination with excess PbI2 eliminates the formation of yellow non-perovskite phase and enhances the crystallinity of the films. However, the addition of more than 10% RbI results in the formation of a Rb-rich phase, which is detrimental for the cell performance. The findings are confirmed by cathodoluminescence measurements, which also reveal the spatial distribution of different phases on the perovskite films. The performance of RbI-doped perovskite cell is reported for the first time with the highest efficiency of 18.8% and improved thermal/photo stability compared to the undoped cells. The study demonstrates the potential of Rb as an alternative cation for use in high efficiency perovskite cells
    corecore