220 research outputs found

    Body Composition and Strength Symmetry of Kettlebell Sport Athletes

    Get PDF
    Kettlebell sport (KBs) is increasingly popular, but very few studies have been focused on this discipline. This research aims to investigate the effects of KBs on body composition, strength symmetry, and segmental body composition symmetry in a sample of Italian elite athletes. Data were collected from a sample of 16 athletes of both sexes (11 men and 5 women; 34.5 ± 9.0 years of age). Anthropometric (height, weight, arm, thigh, calf, and waist circumferences), hand grip strength, and total and segmental bioelectrical variables were taken. Body composition was analysed by using specific bioelectrical impedance vector analysis (BIVA). Paired t-tests and confidence ellipses were applied to analyse bilateral differences. Elite athletes of both sexes showed high values of phase angle, indicative of high body cell mass and quality and proxy of muscle mass. Hand grip strength and body composition were symmetrical, with the only exception of a higher %FM in the right leg (Zsp: t = 3.556; p = 0.003). In conclusion, this study suggests that KBs contributes to muscle mass improvement, body composition, and strength symmetry, especially in the upper body

    Blood Flow Restriction Training Reduces Blood Pressure During Exercise Without Affecting Metaboreflex Activity

    Get PDF
    Objective: Blood flow restriction training (BFRT) has been proposed to induce muscle hypertrophy, but its safety remains controversial as it may increase mean arterial pressure (MAP) due to muscle metaboreflex activation. However, BFR training also causes metabolite accumulation that may desensitize type III and IV nerve endings, which trigger muscle metaboreflex. Then, we hypothesized that a period of BFR training would result in blunted hemodynamic activation during muscle metaboreflex.Methods: 17 young healthy males aged 18–25 yrs enrolled in this study. Hemodynamic responses during muscle metaboreflex were assessed by means of postexercise muscle ischemia (PEMI) at baseline (T0) and after 1 month (T1) of dynamic BFRT. BFRT consisted of 3-min rhythmic handgrip exercise applied 3 days/week (30 contractions per minute at 30% of maximum voluntary contraction) in the dominant arm. On the first week, the occlusion was set at 75% of resting systolic blood pressure (always obtained after 3 min of resting) and increased 25% every week, until reaching 150% of resting systolic pressure at week four. Hemodynamic measurements were assessed by means of impedance cardiography.Results: BFRT reduced MAP during handgrip exercise (T1: 96.3 ± 8.3 mmHg vs. T0: 102.0 ± 9.53 mmHg, p = 0.012). However, no significant time effect was detected for MAP during the metaboreflex activation (P > 0.05). Additionally, none of the observed hemodynamic outcomes, including systemic vascular resistance (SVR), showed significant difference between T0 and T1 during the metaboreflex activation (P > 0.05).Conclusion: BFRT reduced blood pressure during handgrip exercise, thereby suggesting a potential hypotensive effect of this modality of training. However, MAP reduction during handgrip seemed not to be provoked by lowered metaboreflex activity

    Immunohistochemical localisation and molecular expression of the steroidogenic enzyme cytochrome P450 17α-hydroxylase ⁄C(17,20)-lyase in the vestibular nuclei of adult male rats

    No full text
    Many biologically active neurosteroids, including dehydroepiandrosterone (DHEA), are synthesised in the brain. DHEA is a potent endogenous modulator of several neuronal functions, and alterations of DHEA are correlated with various neurobiological deficits. The cytochrome P450 17α-hydroxylase ⁄ C(17,20)-lyase (P450C17) plays a pivotal role in the synthesis of DHEA from pregnenolone and progesterone. We investigated the immunohistochemical localisation and molecular expression of P450C17 in the superior, lateral, medial and inferior vestibular nuclei (VCN) of adult male rats by western blotting and indirect immunofluorescence analysis. Immunoreactive P450C17 was widely distributed in all VCN and the expression of P450C17 was confirmed by western blot analysis. The present study demonstrates, for the first time, the presence and anatomical distribution of P450C17 in the VCN. Given that neurosteroids can modulate neuronal activities in the medial vestibular nucleus, DHEA synthesised in the VCN may play an important role in the control of specific activities at this level

    Hemodynamic responses during enduro-motorcycling performance

    No full text
    Much of the information available in the literature on physiological responses during Enduro motorcycling is related to heart rate (HR) and blood lactate (BLa). The aim of this work was to investigate the hemodynamic changes that occur during a 10-min session of Enduro motorcycling. Fifteen skilled riders were enrolled on the study and all participants underwent an Enduro-motorcycling session on a standard track. Hemodynamics were assessed using a miniaturized impedance cardiograph. Results show that HR significantly increased from 96.5 ± 12.8 bpm at rest to 153.1 ± 17.7 bpm during riding, while stroke volume (SV) increased from 53.5 ± 14.1 to 72.2 ± 22.1 ml and cardiac output (CO) from 5.0 ± 1.1 to 10.9 ± 3.0 L·min-1. Moreover, ventricular emptying rate (VER) increased from 192.9 ± 43.0 to 324.1 ± 83.6 ml·s1 and ventricular filling rate (VFR) from 141.1 ± 160.5 to 849 ± 309 ml·s-1. Taken together, these data suggest that Enduro motorcycling induces substantial cardiovascular activation, not only in terms of chronotropism but also in terms of cardiac performance and pre-load, thereby increasing SV and CO. Finally, it is likely that sympathetic-mediated venous constriction occurred. This in turn improved VFR and recruited the Frank-Starling mechanism and inotropic reserve. It was concluded that Enduro motorcycling is a challenging activity for the cardiovascular apparatu

    Hemodynamic response to muscle reflex is abnormal in patients with heart failure with preserved ejection fraction

    No full text
    The aim of the present investigation was to assess the role of cardiac diastole on the hemodynamic response to metaboreflex activation. We wanted to determine whether patients with diastolic function impairment showed a different hemodynamic response compared with normal subjects during this reflex. Hemodynamics during activation of the metaboreflex obtained by postexercise muscle ischemia (PEMI) was assessed in 10 patients with diagnosed heart failure with preserved ejection fraction (HFpEF) and in 12 age-matched healthy controls (CTL). Subjects also performed a control exercise-recovery test to compare data from the PEMI test. The main results were that patients with HFpEF achieved a similar mean arterial blood pressure (MAP) response as the CTL group during the PEMI test. However, the mechanism by which this response was achieved was markedly different between the two groups. Patients with HFpEF achieved the target MAP via an increase in systemic vascular resistance (+389.5 ± 402.9 vs. +80 ± 201.9 dynes·s-1·cm-5 for HFpEF and CTL groups respectively), whereas MAP response in the CTL group was the result of an increase in cardiac preload (-1.3 ± 5.2 vs. 6.1 ± 10 ml in end-diastolic volume for HFpEF and CTL groups, respectively), which led to a rise in stroke volume and cardiac output. Moreover, early filling peak velocities showed a higher response in the CTL group than in the HFpEF group. This study demonstrates that diastolic function is important for normal hemodynamic adjustment to the metaboreflex. Moreover, it provides evidence that HFpEF causes hemodynamic impairment similar to that observed in systolic heart failure.NEW & NOTEWORTHY This study provides evidence that diastolic function is important for normal hemodynamic responses during the activation of the muscle metaboreflex in humans. Moreover, it demonstrates that diastolic impairment leads to hemodynamic consequences similar to those provoked by systolic heart failure. In both cases the target blood pressure is obtained mainly by means of exaggerated vasoconstriction than by a flow-mediated mechanis

    Role of the trigeminal mesencephalic nucleus in rat whisker pad proprioception

    No full text
    Abstract Background Trigeminal proprioception related to rodent macrovibrissae movements is believed to involve skin receptors on the whisker pad because pad muscles operate without muscle spindles. This study was aimed to investigate in rats whether the trigeminal mesencephalic nucleus (TMnu), which provides proprioceptive feedback for chewing muscles, may be also involved in whisker pad proprioception. Methods Two retrograde tracers, Dil and True Blue Chloride, were injected into the mystacial pad and the masseter muscle on the same side of deeply anesthetized rats to label the respective projecting sensory neurons. This double-labeling technique was used to assess the co-innervation of both structures by the trigeminal mesencephalic nucleus (TMnu). In a separate group of anesthetized animals, the spontaneous electrical activities of TMnu neurons were analyzed by extracellular recordings during spontaneous movements of the macrovibrissae. Mesencephalic neurons (TMne) were previously identified by their responses to masseter muscle stretching. Changes in TMne spontaneous electrical activities, analyzed under baseline conditions and during whisking movements, were statistically evaluated using Student's t-test for paired observations. Results Neuroanatomical experiments revealed different subpopulations of trigeminal mesencephalic neurons: i) those innervating the neuromuscular spindles of the masseter muscle, ii) those innervating the mystacial pad, and iii) those innervating both structures. Extracellular recordings made during spontaneous movements of the macrovibrisae showed that whisking neurons similar to those observed in the trigeminal ganglion were located in the TMnu. These neurons had different patterns of activation, which were dependent on the type of spontaneous macrovibrissae movement. In particular, their spiking activity tonically increased during fan-like movements of the vibrissae and showed phasic bursting during rhythmic whisking. Furthermore, the same neurons may also respond to masseter muscle stretch. Conclusions results strongly support the hypothesis that the TMnu also contains first-order neurons specialized for relaying spatial information related to whisker movement and location to trigeminal-cortical pathways. In fact, the TMnu projects to second-order trigeminal neurons, thus allowing the rat brain to deduce higher-order information regarding executed movements of the vibrissae by combining touch information carried by trigeminal ganglion neurons with proprioceptive information carried by mesencephalic neurons.</p

    Occurrence of cardiac output decrease (via stroke volume) is more pronounced in women than in men during prolonged dry static apnea.

    No full text
    Little is known about sex differences in autonomic cardiovascular regulation of the diving response, and the few available studies of these differences were conducted on subjects with limited or no diving experience. We examined the influence of sex on hemodynamics during dry static apnea (SA) in eight male and eight female elite divers matched for their breath hold (BH) ability. Hemodynamics was assessed by means of simultaneous echocardiography and impedance cardiography measurements, and arterial pressure and oxygen saturation (SaO2) were also collected. In the first quarter (AP25%) and half (AP50%) of apnea duration cardiac output (CO) showed a more rapid and intense decrease in women than in men (- 43% vs. - 17% during AP25% and - 40% vs. - 19% during AP50%, respectively, P < 0.05). At the same time points, systemic vascular resistance (SVR) increased more in women than in men (+ 22% vs. +100% at AP25% and +48% vs. +107% at AP50%, respectively, P < 0.05). SaO2 progressively declined in both groups, but men showed a more pronounced decrease than women at the end of apneas (- 13% vs. - 5%, respectively, P < 0.05). In men the higher the body surface area values the longer the apnea, while in women the higher the SVR response the longer the apnea. In elite female divers, the magnitude of CO decrease during dry SA was larger than in male divers. The capacities to store oxygen and to reduce O2 consumption play a pivotal role in BH performance, but their extent seems to be different in the sexes

    Effect of aging on hemodynamic response to metaboreflex activation

    No full text
    The aim of the present investigation was to assess the role of aging on the contribution of diastolic function during metaboreflex activation. In particular, it aimed to determine whether age-related impairment in diastolic function would produce a different hemodynamic response in elderly subjects (EG) as compared to young controls (CTL)
    corecore