175 research outputs found

    Bacteria in Solitary Confinement

    Get PDF
    Research in my laboratory is supported by Biotechnology and Biological Sciences Research Council grant BB/J016985/1

    Electron transport and light-harvesting switches in cyanobacteria

    Get PDF
    Work in this field in the author’s laboratory was funded by Biotechnology and Biological Sciences Research Council grants BB/G021856/1 and BB/J016985/1 and the European Commission through a Marie Curie Fellowship to Lu-Ning Liu (FP7-PEOPLE-2009-IEF254575) and the Marie Curie ITN Control of light-use efficiency in plants and algae – from light to harvest (HARVEST)

    Classic Spotlight: Dynamics of the Bacterial Cytoplasm

    Get PDF

    The influence of acetyl phosphate on DspA signalling in the Cyanobacterium Synechocystis sp PCC6803

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The <it>dspA </it>(<it>hik33</it>) gene, coding for a putative sensory histidine kinase, is conserved in plastids (<it>ycf26</it>) and cyanobacteria. It has been linked with a number of different stress responses in cyanobacteria.</p> <p>Results</p> <p>We constructed an insertional mutant of <it>dspA </it>(<it>ycf26) </it>in <it>Synechocystis </it>6803. We found little phenotypic effect during nitrogen starvation. However, when the mutation was combined with deletion of the <it>pta </it>gene coding for phosphotransacetylase, a more significant phenotype was observed. Under nitrogen starvation, the <it>pta/dspA </it>double mutant degrades its phycobilisomes less than the wild type and still has about half of its chlorophyll-protein complexes.</p> <p>Conclusion</p> <p>Our data indicates that acetyl-phosphate-dependent phosphorylation of response regulator(s) overlaps with DspA-dependent signalling of the degradation of chlorophyll-protein complexes (and to a lesser extent phycobilisomes) in <it>Synechocystis </it>6803.</p

    Overexpression of SepJ alters septal morphology and heterocyst pattern regulated by diffusible signals in Anabaena.

    Get PDF
    Filamentous, N2 -fixing, heterocyst-forming cyanobacteria grow as chains of cells that are connected by septal junctions. In the model organism Anabaena sp. strain PCC 7120, the septal protein SepJ is required for filament integrity, normal intercellular molecular exchange, heterocyst differentiation, and diazotrophic growth. An Anabaena strain overexpressing SepJ made wider septa between vegetative cells than the wild type, which correlated with a more spread location of SepJ in the septa as observed with a SepJ-GFP fusion, and contained an increased number of nanopores, the septal peptidoglycan perforations that likely accommodate septal junctions. The septa between heterocysts and vegetative cells, which are narrow in wild-type Anabaena, were notably enlarged in the SepJ-overexpressing mutant. Intercellular molecular exchange tested with fluorescent tracers was increased for the SepJ-overexpressing strain specifically in the case of calcein transfer between vegetative cells and heterocysts. These results support an association between calcein transfer, SepJ-related septal junctions, and septal peptidoglycan nanopores. Under nitrogen deprivation, the SepJ-overexpressing strain produced an increased number of contiguous heterocysts but a decreased percentage of total heterocysts. These effects were lost or altered in patS and hetN mutant backgrounds, supporting a role of SepJ in the intercellular transfer of regulatory signals for heterocyst differentiation

    Photosynthesis Under a Red Sun: Predicting the absorption characteristics of an extraterrestrial light-harvesting antenna

    Get PDF
    Here we discuss the feasibility of photosynthesis on Earth-like rocky planets in close orbit around ultra-cool red dwarf stars. Stars of this type have very limited emission in the \textit{photosynthetically active} region of the spectrum (400−700 nm), suggesting that they may not be able to support oxygenic photosynthesis. However, photoautotrophs on Earth frequently exploit very dim environments with the aid of highly structured and extremely efficient antenna systems. Moreover, the anoxygenic photosynthetic bacteria, which do not need to oxidize water to source electrons, can exploit far red and near infrared light. Here we apply a simple model of a photosynthetic antenna to a range of model stellar spectra, ranging from ultra-cool (2300 K) to Sun-like (5800 K). We assume that a photosynthetic organism will evolve an antenna that maximizes the rate of energy input while also minimizing fluctuations. The latter is the 'noise cancelling' principle recently reported by Arp et al. 2020. Applied to the Solar spectrum this predicts optimal antenna configurations in agreement with the chlorophyll Soret absorption bands. Applied to cooler stars, the optimal antenna peaks become redder with decreasing stellar temperature, crossing to the typical wavelength ranges associated with anoxygenic photoautotrophs at ∼3300 K. Lastly, we compare the relative input power delivered by antennae of equivalent size around different stars and find that the predicted variation is within the same order of magnitude. We conclude that low-mass stars do not automatically present light-limiting conditions for photosynthesis but they may select for anoxygenic organisms

    Independent mobility of proteins and lipids in the plasma membrane of Escherichia coli

    Get PDF
    Biotechnology and Biological Sciences Research Council. Grant Number: BB/E009571, Oxford Centre for Integrative Systems Biology (OCISB), Engineering and Physical Science Research Council, Royal Society, Hertford College Oxfor

    FRAP Analysis on Red Alga Reveals the Fluorescence Recovery Is Ascribed to Intrinsic Photoprocesses of Phycobilisomes than Large-Scale Diffusion

    Get PDF
    BACKGROUND: Phycobilisomes (PBsomes) are the extrinsic antenna complexes upon the photosynthetic membranes in red algae and most cyanobacteria. The PBsomes in the cyanobacteria has been proposed to present high lateral mobility on the thylakoid membrane surface. In contrast, direct measurement of PBsome motility in red algae has been lacking so far. METHODOLOGY/PRINCIPAL FINDINGS: In this work, we investigated the dynamics of PBsomes in the unicellular red alga Porphyridium cruentum in vivo and in vitro, using fluorescence recovery after photobleaching (FRAP). We found that part of the fluorescence recovery could be detected in both partially- and wholly-bleached wild-type and mutant F11 (UTEX 637) cells. Such partial fluorescence recovery was also observed in glutaraldehyde-treated and betaine-treated cells in which PBsome diffusion should be restricted by cross-linking effect, as well as in isolated PBsomes immobilized on the glass slide. CONCLUSIONS/SIGNIFICANCE: On the basis of our previous structural results showing the PBsome crowding on the native photosynthetic membrane as well as the present FRAP data, we concluded that the fluorescence recovery observed during FRAP experiment in red algae is mainly ascribed to the intrinsic photoprocesses of the bleached PBsomes in situ, rather than the rapid diffusion of PBsomes on thylakoid membranes in vivo. Furthermore, direct observations of the fluorescence dynamics of phycoerythrins using FRAP demonstrated the energetic decoupling of phycoerythrins in PBsomes against strong excitation light in vivo, which is proposed as a photoprotective mechanism in red algae attributed by the PBsomes in response to excess light energy

    Intercellular Diffusion of a Fluorescent Sucrose Analog via the Septal Junctions in a Filamentous Cyanobacterium

    Get PDF
    D.J.N. was supported by a Queen Mary University of London College studentship. M.N.M. was the recipient of an FPU (Formación del Personal Universitario) fellowship from the Spanish Government. Work in Seville was supported by grant BFU2011-22762 from Plan Nacional de Investigación, Spain, cofinanced by the European Regional Development Fund, and by Plan Andaluz de Investigación, Regional Government of Andalucía (grant P10-CVI-6665). Research in Tübingen was supported by the Deutsche Forschungsgemeinschaft (SFB766)

    Solar powered biohydrogen production requires specific localization of the hydrogenase

    Get PDF
    This work was supported by BBSRC Grant (BB/G021856/1) to SJB, PJN and CWM. We acknowledge support from the U.S. DoE, Biological and Environmental Research Program to MB, the U.S. DoE Fuel Cell Technologies Office (contract number DE-AC36-08-GO28308) to CAE and EPSRC (EP/F00270X/1) to MB and PJN
    corecore