3,924 research outputs found

    Angular momentum conservation in measurements on spin Bose-Einstein condensates

    Full text link
    We discuss a thought experiment where two operators, Alice and Bob, perform transverse spin measurements on a quantum system; this system is initially in a double Fock spin state, which extends over a large distance in space so that the two operators are far away from each other. Standard quantum mechanics predicts that, when Alice makes a few measurements, a large transverse component of the spin angular momentum may appear in Bob's laboratory. A paradox then arises since local angular momentum conservation seems to be violated. It has been suggested that this angular momentum may be provided by the interaction with the measurement apparatuses. We show that this solution of the paradox is not appropriate, so that another explanation must be sought. The general question is the retroaction of a quantum system onto a measurement apparatus. For instance, when the measured system is entangled with another quantum system, can its reaction on a measurement apparatus be completely changed? Is angular momentum conserved only on average over several measurements, but not during one realization of the experiment?Comment: 11 pages, 3 figure

    Quantum properties of a single beam splitter

    Full text link
    When a single beam-splitter receives two beams of bosons described by Fock states (Bose-Einstein condensates at very low temperatures), interesting generalizations of the two-photon Hong-Ou-Mandel effect take place for larger number of particles. The distributions of particles at two detectors behind the beam splitter can be understood as resulting from the combination of two effects, the spontaneous phase appearing during quantum measurement, and the quantum angle. The latter introduces quantum "population oscillations", which can be seen as a generalized Hong-Ou-Mandel effect, although they do not always correspond to even-odd oscillations.Comment: 14 pages, 11 figure

    Validity of the Hohenberg Theorem for a Generalized Bose-Einstein Condensation in Two Dimensions

    Get PDF
    Several authors have considered the possibility of a generalized Bose-Einstein condensation (BEC) in which a band of low states is occupied so that the total occupation number is macroscopic, even if the occupation number of each state is not extensive. The Hohenberg theorem (HT) states that there is no BEC into a single state in 2D; we consider its validity for the case of a generalized condensation and find that, under certain conditions, the HT does not forbid a BEC in 2D. We discuss whether this situation actually occurs in any theoretical model system.Comment: 6 pages, Latex, JLTP class, accepted by Jour. Low Temp. Phys., Quantum Fluids and Solids Conference QFS200

    Beyond spontaneously broken symmetry in Bose-Einstein condensates

    Full text link
    Spontaneous symmetry breaking (SSB) for Bose-Einstein condensates cannot treat phase off-diagonal effects, and thus not explain Bell inequality violations. We describe another situation that is beyond a SSB treatment: an experiment where particles from two (possibly macroscopic) condensate sources are used for conjugate measurements of the relative phase and populations. Off-diagonal phase effects are characterized by a "quantum angle" and observed via "population oscillations", signaling quantum interference of macroscopically distinct states (QIMDS).Comment: 10 pages 4 figure

    Ursell Operators in Statistical Physics III: thermodynamic properties of degenerate gases

    Full text link
    We study in more detail the properties of the generalized Beth Uhlenbeck formula obtained in a preceding article. This formula leads to a simple integral expression of the grand potential of the system, where the interaction potential appears only through the matrix elements of the second order Ursell operator U2U_{2}. Our results remain valid for significant degree of degeneracy of the gas, but not when Bose Einstein (or BCS) condensation is reached, or even too close from this transition point. We apply them to the study of the thermodynamic properties of degenerate quantum gases: equation of state, magnetic susceptibility, effects of exchange between bound states and free particles, etc. We compare our predictions to those obtained within other approaches, especially the ``pseudo potential'' approximation, where the real potential is replaced by a potential with zero range (Dirac delta function). This comparison is conveniently made in terms of a temperature dependent quantity, the ``Ursell length'', which we define in the text. This length plays a role which is analogous to the scattering length for pseudopotentials, but it is temperature dependent and may include more physical effects than just binary collision effects; for instance at very low temperatures it may change sign or increase almost exponentially, an effect which is reminiscent of a precursor of the BCS pairing transition. As an illustration, numerical results for quantum hard spheres are given.Comment: 26 pages, 4 figures, LaTeX (amssymb), slight changes to first versio

    Aids, Anthrax, And Compulsory Licensing: Has The United States Learned Anything? A Comment On Recent Decisions On The International Intellectual Property Rights Of Pharmaceutical Patents

    Get PDF
    The concern over protection of Intellectual Property has been an issue for over 500 years

    Shot noise of interference between independent atomic systems

    Full text link
    We study shot (counting) noise of the amplitude of interference between independent atomic systems. In particular, for the two interfering systems the variance of the fringe amplitude decreases as the inverse power of the number of particles per system with the coefficient being a non-universal number. This number depends on the details of the initial state of each system so that the shot noise measurements can be used to distinguish between such states. We explicitly evaluate this coefficient for the two cases of the interference between bosons in number states and in broken symmetry states. We generalize our analysis to the interference of multiple independent atomic systems. We show that the variance of the interference contrast vanishes as the inverse power of the number of the interfering systems. This result, implying high signal to noise ratio in the interference experiments, holds both for bosons and for fermions.Comment: 5 pages, 1 figure, final version, added a simple quantum-mechanical argument why two independent condensates with fixed number of particles in each must interfere in a generic experimental setu

    Shear-flow transition: the basin boundary

    Full text link
    The structure of the basin of attraction of a stable equilibrium point is investigated for a dynamical system (W97) often used to model transition to turbulence in shear flows. The basin boundary contains not only an equilibrium point Xlb but also a periodic orbit P, and it is the latter that mediates the transition. Orbits starting near Xlb relaminarize. We offer evidence that this is due to the extreme narrowness of the region complementary to basin of attraction in that part of phase space near Xlb. This leads to a proposal for interpreting the 'edge of chaos' in terms of more familiar invariant sets.Comment: 11 pages; submitted for publication in Nonlinearit

    Nonlocal appearance of a macroscopic angular momentum

    Full text link
    We discuss a type of measurement in which a macroscopically large angular momentum (spin) is "created" nonlocally by the measurement of just a few atoms from a double Fock state. This procedure apparently leads to a blatant nonconservation of a macroscopic variable - the local angular momentum. We argue that while this gedankenexperiment provides a striking illustration of several counter-intuitive features of quantum mechanics, it does not imply a non-local violation of the conservation of angular momentum.Comment: 10 pages, 1 figur
    • ā€¦
    corecore